SELECT BOARD Special Meeting Agenda 6:00 p.m. April 4, 2023 ROSEMARY RECREATIONAL COMPLEX

Pursuant to Chapter 2 of the Acts of 2023, meetings of public bodies may be conducted virtually provided that adequate access is provided to the public.

To listen and view this virtual meeting on a phone, computer, laptop, or tablet, download the "Zoom Cloud Meeting" app in any app store or at www.zoom.us. At the above date and time, click on "Join a Meeting" and enter the meeting or click the link below to join the webinar:

 $\frac{https://uso2web.zoom.us/j/83653117812?pwd=bVNNRllnRjAwRmRWcnJseUFDbHQz}{UTo9}$

Passcode: 489891

One tap mobile: +13017158592,,83653117812#

Webinar ID: 836 5311 7812

1.	6:00	 Town Manager Approve Memoranda of Agreement between the Town and the Needham Firefighters Local 1706, Units A and B for FY2023 and FY2024 – 2026
2.	6:15	 Claxton Field Update Katie King, Assistant Town Manager/Director of Operations Carys Lustig, Director of Public Works Tim McDonald, Director of Health & Human Services Stacey Mulroy, Director of Park & Recreation
3⋅	6:45	Adjourn

CONSENT AGENDA

April 1, 2024.

1.	Extend the authorization granted to the Town Manager by its vote of June 9, 2020 to grant all local approvals necessary to allow existing local businesses to utilize outdoor seating in parking lots, on-street parking spaces, sidewalks, landscaped yard areas or other appropriate locations to provide more space to serve patrons until April 1, 2024, such authorization to remain subject to all the terms and conditions stated in the Board's original vote and to Chapter 2 of the Acts of 2023.
2.	Vote to waive the Outdoor Dining License fees for Calendar Year 2023.
3.	Authorize the consumption of alcohol, as defined by M.G.L. c. 138, Section 1, that has been sold in association with take-out service of food pursuant to Section 13 of c. 53 of the Acts of 2020, as amended by Chapter 2 of the Acts of 2023, at the Town Common, the Needham Heights Common/Avery Square, and Eaton Plaza under the provisions of Section 3.1.9 of the General By-laws of the Town until

Select Board TOWN OF NEEDHAM AGENDA FACT SHEET

MEETING DATE: 4/4/2023

Agenda Item	Approve Memoranda of Agreement between the Town and the Needham Firefighters Local 1706, Units A and B for FY2023 and FY2024 – 2026
Presenter(s)	Kate Fitzpatrick, Town Manager

1. BRIEF DESCRIPTION OF TOPIC TO BE DISCUSSED

The Town Manager will recommend that the Board approve and sign Memoranda of Agreement between the Town and the Needham Fire Union Local 1706 for the period FY2023 and FY2024 through FY2026.

The Agreements achieve a first step in the Board's objective to remove the Fire Department from the Civil Service system, improve the Town's recruitment efforts by increasing EMT/Paramedic pay, expand educational opportunities, and includes other monetary and language items as shown on the attached MOA.

2. VOTE REQUIRED BY SELECT BOARD

Suggested Motion: That the Board approve and sign the Memoranda of Agreement between the Town and the Needham Fire Union Local 1706 for FY2023 and FY2024 through FY2026.

3. BACK UP INFORMATION ATTACHED

1. MOAs between the Town and the Needham Fire Union Local 1706

Memorandum of Agreement Fiscal Year 2023

Town and C collect	of Needham (hereinafte (hereinafter the "Union	r the "Town") and the	, 2023 by an enemone Needham Firefighters Loc ressly set forth herein, all pland the Union, which by its text.	al 1706 Units A rovisions of the
1.	The term of the Agreen	nent shall be July 1, 2	2022 through June 30, 2023.	
2.	All Base Wages contain by 2.5% effective July		it A) and Article 22 (Unit C) s	hall be increased
Town	of Needham		Needham Firefighters Local	1706
		-		
		- -		
		-		
		-		
Date: _		-	Date:	
Town 1	Manager/Date			

This agreement shall be executed in one or more counterparts, each of which when so executed shall constitute but one and the same instrument

Memorandum of Agreement

Fiscal Year 2024, 2025, 2026

Agreement is hereby made this ______day of _______, 2023 by and between the Town of Needham (hereinafter the "Town") and the Needham Firefighters Local 1706 Units A and C (hereinafter the "Union"). Except as expressly set forth herein, all provisions of the collective bargaining agreement between the Town and the Union, which by its terms is in effect through June 30, 2022, remain in full force and effect.

- 1. The term of the Agreement shall be July 1, 2023 through June 30, 2026.
- 2. All Base Wages contained in Article 25 (Unit A) and Article 22 (Unit C) shall be increased as follows:

FY2024 (July 1, 2023)

2.5% increase in base wages Unit A:1% increase in top step

Unit C: new Step 9, 1% differential from Step 8

FY2025 (July 1, 2024)

3% increase in base wages

1% increase in top step

FY2026 (July 1, 2025)

3% increase in base wages

1% increase in top step

3. Amend the EMT and Paramedic Differential sections under Article 25 (Unit A) and Article 22 (Unit C) Wages as follows:

<u>EMT Differential</u> Effective July 1, 2008 all registered Emergency Medical Technicians (EMT) shall be granted additional compensation of 5% annual base salary to be paid weekly.

Effective July 1, 2023 all registered Emergency Medical Technicians (EMT) shall be granted additional compensation of 6% annual base salary to be paid weekly.

Effective July 1, 2024 all registered Emergency Medical Technicians (EMT) shall be granted additional compensation of 7% annual base salary to be paid weekly.

Effective July 1, 2025 all registered Emergency Medical Technicians (EMT) shall be granted additional compensation of 8% annual base salary to be paid weekly.

<u>Paramedic Differential</u> Effective July 1, 2008 for certification as a Paramedic, a differential of 11.5% of annual base pay will be paid weekly in accordance with the provisions contained in Article 4 Section 6 of this Agreement for those in the ambulance rotation.

Effective July 1, 2023 for certification as a Paramedic, a differential of 12.5% of annual base pay will be paid weekly in accordance with the provisions contained in Article 4 Section 6 of this Agreement for those in the ambulance rotation.

Effective July 1, 2024 for certification as a Paramedic, a differential of 13.5% of annual base pay will be paid weekly in accordance with the provisions contained in Article 4 Section 6 of this Agreement for those in the ambulance rotation.

Effective July 1, 2025 for certification as a Paramedic, a differential of 14.5% of annual base pay will be paid weekly in accordance with the provisions contained in Article 4 Section 6 of this Agreement for those in the ambulance rotation.

It is understood that firefighters who are certified as paramedics will receive paramedics pay as set forth above, and will not also receive EMT pay.

4. Insert a new Article 4 (Unit C) Advanced Life Support Program as follows:

ARTICLE 4 ADVANCED LIFE SUPPORT PROGRAM

The Town agrees to upgrade to the Advanced Life Support level of Emergency Medical Services subject to the following conditions:

If, in the discretion of the Town, the ALS program, or the implementation of the ALS program, shall result in a situation in which the net increase in costs associated with ALS is not offset by a net increase in revenue associated with ALS, or shall be deemed otherwise not financially feasible, the Town may unilaterally discontinue the ALS program or program implementation, which decision shall not be grievable.

The Town shall have the discretion to determine the appropriate number of Paramedics necessary for the operation of the Emergency Medical Service.

<u>EMT Certification</u> It is a condition of employment that all firefighters appointed after July 1, 1991 must obtain EMT certification during the applicable probationary period, and maintain such certification thereafter. Failure to obtain or maintain certification as an EMT will result in termination from Town service, unless waived by the Fire Chief and Town Manager in extraordinary circumstances.

<u>Paramedic Certification</u> Employees hired on the basis of paramedic certification or who received tuition and/or the Paramedic Certification Incentive Payment are required as a condition of employment to maintain the Paramedic Certification thereafter except as set forth below. Failure to maintain such Paramedic Certification will result in termination from Town service, unless waived by the Fire Chief and Town Manager in extraordinary circumstances.

Firefighter/Paramedics who are promoted in rank or special assignment and thereby removed from the ambulance rotation, and who remain certified, will receive out of rotation paramedic differential that is 4.5% higher than the current EMT differential. Paramedics out of rotation must maintain their paramedic certification as a condition of employment.

5. Amend Article 25 (Unit A) and Article 22 (Unit C) Wages as follows:

<u>Training Stipend</u> (effective the July 1st after the Needham Fire Department is removed from the Civil Service System and in accordance with the provisions of Article 26).

Unit A

EMT		Paramedic	
Captain	\$53.56	Captain	\$76.77
Lieutenant	\$45.10	Lieutenant	\$64.62
Firefighter	\$34.23	Firefighter	\$49.04
Unit C		D 1	
EMT		Paramedic	
Deputy	\$56.04	Deputy Chief	\$80.33

- 6. Delete Section 3(d) of Article 4 Duties Firefighters (Unit A) and insert in place thereof the following:
 - (d) Newly hired firefighters shall be assigned to a training facility, i.e., Mass. Fire Academy, Boston Fire Academy, or a similar facility, mutually agreed upon by both parties, prior to beginning a regular scheduled shift, and shall not be assigned overtime duty until completion of their training. It is agreed that certified paramedics are authorized to work on the ambulance prior to attending the appropriate fire academy. The schedule for paramedics working prior to attending the fire academy shall consist of four 10-hour days as determined by the Fire Chief.

- 7. Delete Section 6(e) of Article 4 (Unit A) Duties Firefighters and renumber following sections accordingly once the Needham Fire Department is removed from the Civil Service System.
- 8. Amend Section 6(g) of Article 4 Duties Firefighters (Unit A) as follows:
 - (g) Firefighter/Paramedics who are promoted in rank or special assignment and thereby removed from the ambulance rotation, and who remain certified, will receive out of rotation paramedic differential that is 4.5% higher than the current EMT differential. **Paramedics out of rotation must maintain their paramedic certification as a condition of employment.**
- 9. Amend Section 6(h)1, 2 and 3 of Article 4 Duties Firefighters (Unit A) as follows:
 - (h) Once and as long as the Town reaches a complement of 32 paramedic in rotation, the most senior paramedic who desires to do so may opt out of the paramedic rotation in accordance with the following:
 - 1. For a paramedic with at least ten years of service as a paramedic in Needham in rotation, no paramedic differential will be paid. In such case, only the 5% EMT differential will be paid.
 - 2. For a paramedic with at least 15 years of service as a paramedic in Needham in rotation, a senior paramedic opt-out differential will be paid that is 2.25% higher than the current EMT differential., in addition to the 5% EMT differential.
 - 3. For a paramedic with 20 or more years of service, a senior paramedic optout differential will be paid that is 4.5% higher than the current EMT differential. in addition to the 5% EMT differential.
- 10. The parties acknowledge the Town's right to revoke its acceptance of the Civil Service statutes. Subsequent to the Town taking the necessary steps required by law to withdraw from Civil Service, delete Article 5 (Unit A) and Article 4 (Unit C) and insert in Unit A the following:

ARTICLE 5 PROMOTION

Section 1. Applicability This policy applies to promotions to the rank of lieutenant, captain, deputy chief and assistant chief. Promotions are based upon the merits of the individuals and their personal performance in the promotion process.

Section 2. Policy It is the policy of the Needham Fire Department to recommend promotions based upon an employee's training, experience and merit as determined pursuant to this Article. The Town Manager is the Appointing Authority for all employees of the Department.

3. Procedures

- 3.1 The Town will select a vendor to administer promotional examinations and/or assessment centers to qualified candidates who meet the eligibility criteria. The vendor will be experienced in developing and administering promotional exams for municipal Fire Departments. The Union president or designee may participate in the selection process for the vendor.
- 3.2 All components of the exams shall comport with testing standards generally accepted by acknowledged experts in public safety promotional exams, and shall fairly test the knowledge, skills, and abilities that can be practically measured and that are actually required to perform the primary functions of the position of lieutenant, captain, deputy chief, or assistant chief.
- 3.3 The Human Resources Department will post written announcements of any scheduled promotional examination no less than 180 days in advance of the test date and will ensure that such announcements are distributed to eligible candidates. The Department will ensure that eligible employees on leave status will be mailed a copy of the announcement.
- 3.4 The Human Resources Department will ensure that all promotional materials, documents, scores, and completed evaluation forms remain confidential and are kept in a secure location.
- 3.5 The Human Resources Department will maintain copies of active promotional lists.
- 3.6 A recommended list of reading materials from which all questions on the written examination will be taken, will be made available to all personnel no less than 180 days prior to the exam date.
- 3.7 The examinations will be provided without cost to the participating employees.

3.8 Examinations

- 3.8.1 The examination will consist of two components: 1. A written examination covering department policies, procedures, rules and regulations, EMS operations, tactical operations, building construction, tools, equipment, and apparatus, supervisory principles, incident command, etc. (50% weight) and 2. An assessment center (50% weight).
- 3.8.2 Calculation of Education, Experience and Military Service Credit Points will be

added to the score of the examination for education, experience and military service credit as follows:

Education (Maximum Points 1.5)

Associate's Degree	0.5
Bachelor's Degree	1.0
Master's Degree	1.5

Experience (Maximum Points 1.5)

Greater than Five Years	0.5
Greater than Ten Years	1.0
Greater than 15 Years	1.5

Military Service (Maximum Points 1.0)

Greater than Two Years	0.5
Greater than Four Years	1.0

Education, Experience and Military Service Credit Points will be added at the end of the examination process. Applicants for promotion must receive a passing score on the examination (including both the written examination and the assessment center portion) prior to the addition of these points in order to be considered for promotion.

- 3.8.3 The selected vendor will provide an orientation and training for all eligible candidates for promotion in advance of an assessment center. The assessment center portion of the exam shall be video recorded, and the recording will be made available to the candidate by the Town after the assessment center.
- 3.8.4 The selected vendor shall develop and implement measures to ensure that the judges selected to score the assessment centers are not aware of the identity of the candidates and otherwise provide scores based entirely on the performance of the participants in the assessment center exercises and not in any way based on other factors. No member of the command staff of the Needham Fire Department shall communicate with any of the judges concerning the qualifications of promotional candidates, or the performance of any candidate in any aspect of the written exam or assessment center.
- 3.8.5 Within one week of the completion of any exam, the vendor shall tabulate the total scores of all candidates and create an eligible list in rank order from high to low. The eligible list shall be posted in all locations where departmental notices are customarily posted.

Section 4. Eligibility

4.1 To be eligible for promotion to the rank of Lieutenant or Captain, the candidate must be a permanent member of the Needham Fire Department with a minimum of three years of completed service in Needham as of the date of the written examination. To be eligible for promotion to the rank of Deputy Chief and Assistant Chief, the candidate must be a permanent member of the Needham Fire Department with a minimum of two years of service as a lieutenant or captain as of the date of the written examination, and a minimum of ten years of service in the Needham Fire Department.

4.2 Promotional Examination for the Rank of Lieutenant and Captain

- 4.2.1 A written exam for lieutenant and captain will be given every two years on or about the first Saturday in November. The passing score on the exam will be seventy (70). If fewer than three (3) individuals achieve a score of seventy (70), the Town is not obligated to make an appointment from the list. The date of the exam may be changed by the Town with 90 days' notice to the Union provided that the new date shall be no sooner than 180 days from the publication of the reading list or more than 210 days from publication of the reading list.
- 4.2.2 Passing the exam will admit candidates to the next phase of the promotion process. Individuals with passing exam scores will remain eligible for promotion from that list until a new list is created.

4.3 <u>Promotional Examination for the Rank of Deputy Chief and Assistant Chief</u>

- 4.3.1 A written promotional exam for the rank of deputy chief and assistant chief will be given every two years on or about the first Saturday in November. The passing score on the exam will be seventy (70). If fewer than three (3) individuals achieve a score of seventy (70) on the exam, the Town is not obligated to make an appointment from the list. The date of the exam may be changed by the Town with 90 days' notice to the Union provided that the new date shall be no sooner than 180 days from the publication of the reading list or more than 210 days from publication of the reading list.
- 4.3.2 Passing the exam will admit candidates to the next phase of the promotion process. Individuals with passing exam scores will remain eligible for promotion from that list until a new list is created.

4.4 Candidate Selection

4.4.1 The Human Resources Department will create a list of candidates ranked from highest score to lowest score. Where the number of promotional appointments to be made is "n," the Fire Chief may make a recommendation for appointment from

the first 3n + 1 persons on the list. The Chief may by-pass a candidate with a higher score on a reasonable and objective basis. It is agreed that a tie score will not be considered a by-pass.

- 4.4.2 The Town Manager will make the final selection of candidates for promotion based on a recommendation by the Fire Chief.
- 4.4.3 Candidates who are not selected for promotion will remain eligible for future promotion until a new list is created.

4.5 Provisional Promotion

When there is no active eligible list, the Chief may fill the vacancy on a provisional basis until the next examination.

4.6 Appeal

- 4.6.1 Within ten (10) business days (Monday through Friday excluding holidays recognized under this Agreement) of the publication of an eligible list, any participant who believes that the exam failed in any way to comply with the requirements of this policy, and that such failure affected the participant's placement on the eligible list, may file a grievance under the Grievance Provisions of the Agreement and the Union shall decide whether to proceed to arbitration over any such grievance.
- 4.6.2 Within ten (10) business days (Monday through Friday excluding holidays recognized under this Agreement) of notice to the Union of the Town Manager's final selection per Section 4.4.2, any candidate that was by-passed by the selection and believes there was no reasonable and objective basis for the by-pass may file a grievance under the Grievance Provisions of the Agreement and the Union shall decide whether to proceed to arbitration over any such grievance.
- 4.6.3 If the Union decides to process a grievance to arbitration under 4.6.1 or 4.6.2, it shall do so pursuant to the Expedited Labor Arbitration Rules of the American Arbitration Association. The Union and the Town shall share in the fees and expenses of the AAA and the arbitrator selected to hear such grievance and the arbitrator's decision shall be final and binding.
- 4.6.4 If there is no appeal or grievance filed, and/or after any appeal or grievance has been finally determined, the eligible list will be deemed to be finalized and shall be used for any promotions to lieutenant, captain, deputy chief or assistant chief until replaced by a subsequent eligible list

- 11. Once the Department has been removed from the Civil Service system, delete Sections 2 and 3 of Article 8 Manpower (Unit A), renumber following sections accordingly, and amend Section 4 as follows:
 - Section 4. Overtime as required for a full tour of duty (10-hour day or 14-hour night), shall be Civil Service firefighters and shall be compensated at the statutory overtime rate.
- 12. Amend Section 6 of Article 10 (Unit A) Section 6 of Article 13 (Unit C)– Injury on Duty as follows:
 - **Section 6. Injury on Duty Policy** Incorporated herein and considered an integral part thereof is the Injury on Duty Management Policy dated May 3, 1995 [Date of Select Board vote].
- 13. Amend section 1 of Article 11 (Unit A) and Article 14 (Unit C) by changing the date of the Injury on Duty policy to [Date of Select Board vote].
- 14. Amend Section 3 of Article 13 Authorized Unpaid Leave of Absence (Unit A) as follows:
 - **Section 3.** Union Business Upon timely written request, the Town agrees to grant a total of not more than twenty-eight (28) forty (40) tours (one day or one night or one tenhour shift) off with pay in each fiscal year for Union business. It is agreed that the Town is not required to cover any union business tours on an overtime basis.
- 15. Amend Article 21 (Unit A) and Article 19 (Unit C) Settlement of Grievances by deleting Section 7 and deleting Section 8 and inserting in place thereof the following:
 - **Section 8. Arbitration** Should the grievance remain unsettled after the decision of the Personnel Board Director of Human Resources, Local 1706 may, by giving written notice to the Town Manager, submit the grievance to arbitration. Such notice shall be given within fifteen (15) business days from the date of the decision of the Personnel Board Director of Human Resources. If such written notice is not given, the grievance shall be deemed to be settled.
 - And by deleting section 9 of Article 21 (Unit A) and Article 19 (Unit C), renumbering following sections accordingly.
- 16. Delete in Article 25 (Unit A) and Article 22 (Unit C) Wages the section entitled "Rank Differential." Delete in Article 25 (Unit A) and Article 22 (Unit C) Wages the section entitled "Compensation Adjustment Option."
- 17. Insert in Article 25 (Unit A) and Article 22 (Unit C) a new section as follows:

401A Retirement Plan Effective January 1, 2024 the Town will contribute up to \$500 annually in a two-for-one match to a 401A retirement Plan. For every \$2 contributed by an employee to a Town-sponsored 457 Deferred Compensation Plan, the Town will contribute \$1 to a 401A Plan.

Effective January 1, 2026 the Town will contribute up to \$1,500 annually in a two-for-one match to a 401A retirement Plan. For every \$2 contributed by an employee to a Town-sponsored 457 Deferred Compensation Plan, the Town will contribute \$1 to a 401A Plan.

18. Insert in Article 22 (Unit C) a new section as follows:

<u>Assistant Fire Chief</u> – The Assistant Fire Chief (formerly Deputy Chief of Operations) will be a salaried position ineligible for overtime. The Assistant Chief will be eligible for education pay and EMT/Paramedic pay but no other additional pay types including but not limited to longevity pay and holiday pay.

19. Delete Article 26 (Unit A) and Article 23 (Unit C) Education Incentive Compensation and insert in place thereof the following:

ARTICLE 26 EDUCATIONAL INCENTIVE COMPENSATION

Section 1. Educational Committee There shall be established an Educational Committee (hereinafter referred to as the "Committee") comprised of the Fire Chief, the Town Manager his/her designee, and a member of Local 1706 designated by the Union President. It shall be their responsibility to supervise and implement the programs listed below. They have the following responsibilities:

- (a) Approval of courses, which have been requested by a firefighter, for credit in the Educational Program.
- (b) Certification of credits after submission of proof by a firefighter and authorization for payment of incentive.
- (c) Establishing of In-Service training courses.
- (d) Approval of payment of career pay upon completion of courses.

Section 2. Members of the bargaining unit as of October 1, 2000 may elect to participate in the Education Incentive Program set forth in this Section, or in Section 3, but not both. Qualifying members of the bargaining unit shall be paid the amounts set forth in this section, in 52 weekly installments:

For 50% of the credits (30 Semester Hours) necessary for a qualifying
Associates Degree or 25% of credits (30 Semester Hours)
necessary for a qualifying Bachelor's Degree:

\$544.50

For having earned a qualifying Associate's Degree or 50% of credits (60 Semester Hours) necessary for a qualifying Bachelor's Degree: \$998.25

For 75% of credits (90 Semester Hours) necessary for a qualifying Bachelor's Degree: \$1,452.00

For the purposes hereof, a qualifying degree shall mean a degree conferred by an educational institution accredited by the State in which such educational institution is located upon completion of a course of study:

- (a) in the field of Fire Science; or
- (b) in any field provided that the degree holder has completed such number of credits in areas directly related to Fire Science as is equal to one half the total number of credits required for such degree.

For the purposes hereof, a qualifying Master's Degree shall mean a Master's Degree conferred by an educational institution accredited by the State in which such institution is located, upon completion of a course of study in the field of public administration, business administration, education, engineering, or any other field if approved in advance by the Education Committee.

- **Section 1.** Members of the bargaining unit who have obtained education levels will be paid the educational incentives listed in this section in 52 weekly installments. For the purposes hereof, a qualifying degree shall mean a degree conferred by an educational institution accredited by the State in which such educational institution is located upon completion of a course of study in the field of Fire Science; or in any field provided that the degree holder has completed such number of credits in areas directly related to Fire Science as is equal to one-half the total number of credits required for such degree.
 - (a) **Associate's Degree** Members of the bargaining unit shall be paid 7.5% of base pay for completion of a qualifying Associate's Degree, matriculation in a qualifying Bachelor's Degree program equal to the Associate's Degree level, or for obtaining and maintaining a Construction Supervisor's License, Journeyman Plumber's License, Master Plumber's License, Journeyman Electrician's License or Master Electrician's License.
 - (b) **Bachelor's Degree** Members of the bargaining unit shall be paid 15% of base pay for completion of a qualifying Bachelor's Degree.
 - (c) **Master's Degree** Members of the bargaining unit shall be paid 15% of base pay for completion of a **qualifying** Master's Degree. in Fire Science.

Section 2. For the purposes hereof, a qualifying degree shall mean a degree conferred by an educational institution accredited by the State in which such educational institution is located

upon completion of a course of study:

- (a) in the field of Fire Science, Emergency Management, Fire Administration, Public Administration, Business Administration, Management, Nursing, Paramedicine, and Engineering; or
- (b) Other degree programs may be accepted on a case-by-case basis if deemed job-related by the Town Manager and Fire Chief. Employees may need to show transcripts and coursework completed for degrees in order to have degree deemed job-related.

It is agreed that members of the bargaining unit as of October 1, 2000 who are receiving education payment at the Associates Degree/60 credit or 90 credit level, will be entitled to participate in the new education program at the Associates Degree level.

Section 3. In Service Training

- (a) An in-service training program shall be conducted within the Fire Service. The program shall provide a minimum of 60 hours off-duty training. To be eligible for the Transitional Career Incentive pay, an individual must satisfactorily complete 40 hours of off-duty, in-service training for which he/she will be paid time and one half his/her rate of pay in effect at the time of the training session. Credit for courses, which would be duplication of courses received elsewhere may be allowed by the Committee upon written submission of proof of attendance by the individual desiring to receive such credit for other in-service courses.
- (b) Members of the bargaining unit certified as EMTs shall be eligible for 60 hours of off-duty training annually at their overtime rate of pay. Members of the bargaining unit who are certified as paramedics (on-rotation and off-rotation) shall be eligible for 86 hours of off-duty training annually at their overtime rate of pay. Courses taken for Emergency Medical Training (EMT) recertification shall constitute off duty in service training for the purpose of this Section and the Section below ("Transitional Career Incentive Pay").
- (e) Employees attending an Emergency Medical Training (EMT) course during off-duty hours shall be compensated for all such hours up to 81 hours at their overtime rates of pay. The Town will reimburse employees for the costs of registration fees and books, if such books are required, incurred in connection with said EMT course. To the extent only that any tuition or course charge is imposed by a hospital where such EMT training is provided, the Town will reimburse the employee. It is expressly understood that the foregoing reimbursement for tuition or course charges will not apply in the case of EMT training at any college or university.

- (c) Nothing in this section shall affect on-duty training for which no extra compensation shall be paid.
- (d) Effective the July 1st after the Needham Fire Department has been removed from the Civil Service system, members of the bargaining unit hired before that date may elect to receive the 60 or 86 hours of off-duty training paid at overtime as set forth in section 4(b) or may elect to receive the training stipend as set forth in Article 25 (Unit A) or Article 22 (Unit C) Wages. Members who elect to receive the training stipend cannot elect at a future date to revert back to training paid at overtime. Members of the bargaining unit hired after the July 1st after the Needham Fire Department has been removed from the Civil Service system will receive the training stipend and will not be eligible for the off-duty training hours paid at overtime.
- (e) Members of the bargaining unit who receive the training stipend will be required, as a condition of employment, to complete 60 (EMT) or 86 (paramedic) hours of training annually. Proof of such attendance must be submitted to the satisfaction of the Fire Chief.
- (f) The Fire Chief may authorize off-duty training paid at overtime in addition to the amounts set forth in subsection (b) and subsection (e).

Section 4. Transitional Career Incentive Pay

(a) To be eligible for the Transitional Career Incentive pay, an individual must satisfactorily complete 40 hours of off duty, in-service training for which they will be paid time and one-half their rate of pay in effect at the time of the training session. Firefighters employed by the Needham Fire Department before October 1, 2009 and who do not receive educational incentive pay and who each year satisfactorily complete 40 hours of off duty in-service training, or its equivalent as determined by the Board, shall be paid career incentive pay for service in the Needham Fire Department as follows:

```
For the fiscal year in which the 5th through 9th service anniversary occurs: $600
For the fiscal year in which the 10th through 19th service anniversary
```

For the fiscal year in which the 10th through 19th service anniversary occurs: \$1,250

For the fiscal year in which the 20^{th} or longer service anniversary occurs: \$2,300 \$3,500

(b) Such payments shall be in lump sum increments as determined by the Committee and shall be rendered on any reasonable dates after July 1 and after completion of the in-service training yearly.

- (c) Any incentive pays referred to in Article 26(Unit A) and Article 23 (Unit C) shall not be used to compute holiday or overtime rates. It is agreed and understood that there shall be no duplication of incentive pays referred to in this article.
- 20. Insert in Article 30/Miscellaneous Provisions (Unit A) and Article 27 (Unit C) a new section as follows:
 - Section 10 (Unit A)/Section 11 (Unit C). Civil Service Rights Firefighters permanently appointed under Chapter 31 shall preserve all other rights and privileges to which they are entitled by law as a consequence of the Town's departure from Civil Service.
- 21. Amend section 6 of Article 30 (Unit A) Article 27 (Unit C) Miscellaneous Provisions as follows:
 - **Section 6. Residency** Members of the bargaining unit **must** may establish residency in a city or town whose perimeter is within 20 miles of the perimeter of the Town of Needham. Members of the bargaining unit whose residence on July 1, 2016 is beyond the 20-mile limit shall be grandfathered only for the period that they continue to reside in such city or town. **The Town Manager and Fire Chief may waive the residency provision in extraordinary circumstances.**
- 22. Once the Department has been removed from the Civil Service system, insert a new Article 31 (Unit A) and Article 28 (Unit C) Lay-off and Recall as follows:

ARTICLE X LAY-OFF AND RECALL

Section 1. Lay-offs shall be made in order of seniority. For purposes of this paragraph, seniority shall be determined by date of permanent appointment to the Department. Subsequent recall shall take place on the same basis. Firefighters shall be eligible for recall for a period of ten calendar years from the effective date of the layoff, unless they decline a recall offer by the Town or fail to respond to a recall offer within thirty (30) calendar days from the date of receipt of the recall notice mailed by the Town to the last known address provided by them to the Town.

Section 2. Recall/Reinstatement Benefits

In the event that a Firefighter is laid off and reinstated, he/she shall be entitled to the following benefits upon return:

(a) <u>Seniority</u> Seniority shall be determined by date of permanent appointment to the Department.

- (b) <u>Longevity</u> The recalled Firefighter shall be entitled to receive credit for prior service for the purposes of longevity payment. The Firefighter's anniversary date for the purposes of longevity payment shall be adjusted by the number of calendar days the Firefighter was separated from his/her permanent position.
- (c) <u>Sick Leave</u> The recalled Firefighter shall be credited with his/her non-occupational sick leave bank as of the time of the lay-off. The Firefighter shall not accrue sick leave during the period that he/she was separated from his/her permanent position.
- (d) <u>Vacation</u> The recalled Firefighter shall be granted credit for prior service for the purposes of vacation. The Firefighter shall not be entitled to vacation for the period that he/she was separated from his/her permanent position. Upon re-hire, the Firefighter shall be granted a proportionate amount of vacation as the number of full calendar months to be worked in the current year bears to the number of calendar months in a year. Partial vacation days shall be rounded up to the closest whole number.
- (e) <u>Step Raises</u> The recalled Firefighter shall be reinstated at the step rate in which he/she was paid at the time of the lay-off. The Firefighter's next step date shall be adjusted by the number of calendar days that he/she was separated from his/her permanent position.

Town of Needham	Needham Firefighters Local 1706
Date:	Date:
Town Manager/Date	

This agreement shall be executed in one or more counterparts, each of which when so executed shall constitute but one and the same instrument

Memorandum of Agreement

Agreement is hereby made this day of of Needham (hereinafter the "Town") and Needham Firef the "Union"):	• • • • • • • • • • • • • • • • • • •
The Town and the Union agree to reopen the collect improvements and enhancements to the Advanced Life Suexpansion to paramedic engine companies, options for recisimilar items.	apport program in the Town, including
Except as expressly set forth herein, all provisions of the column the Town and the Union, which by their terms are in effect force and effect.	
For the Town:	For the Union:
Date:	Date:

This agreement shall be executed in one or more counterparts, each of which when so executed shall constitute but one and the same instrument.

Memorandum of Agreement

Agreement is hereby made this day of of Needham (hereinafter the "Town") and Needham Firefithe "Union"):	
The Town and the Union agree that if the Town establish program, the Union will actively support the program and e	• •
Except as expressly set forth herein, all provisions of the col the Town and the Union, which by their terms are in effect force and effect.	
For the Town:	For the Union:
Date:	Date:

Select Board TOWN OF NEEDHAM AGENDA FACT SHEET

MEETING DATE: 4/4/2023

Agenda Item	Claxton Field Update
Presenter(s)	Katie King, Assistant Town Manager/Director of Operations Carys Lustig, Director of Public Works Tim McDonald, Director of Health & Human Services Stacey Mulroy, Director of Park & Recreation

1. BRIEF DESCRIPTION OF TOPIC TO BE DISCUSSED

Staff will update the Board on the status of the Claxton Field environmental sampling project.

2. VOTE REQUIRED BY SELECT BOARD

N/A - Discussion Only

3. BACK UP INFORMATION ATTACHED

- 1. Claxton Field Update Memo
- 2. Claxton Field Environmental Sampling and Analysis Memo, Weston & Sampson

MEMORANDUM

TO: Select Board, Park & Recreation Commission, Board of Health, School Committee, Finance Committee, and Community Preservation Committee

FROM: Katie King, Assistant Town Manager/Director of Operations; Carys Lustig, Director of Public Works; Timothy McDonald, Director of Health and Human Services; Stacey Mulroy, Director of Park & Recreation

CC: Kate Fitzpatrick, Town Manager; David Davison, Assistant Town Manager/Director of Finance; Dan Gutekanst, Superintendent of Schools; Christopher Heep, Town Counsel

RE: Claxton Field Update DATE: March 31, 2023

Board and Committee Members:

The Select Board is holding a special meeting on Tuesday, April 4th. We have added to the agenda a report on the status of the Claxton Field testing. The Board is meeting at 6:00 p.m. at the Rosemary Recreation Center, and the testing update will be the second item. This meeting will be available on Zoom.

This memo is aimed to provide updated information in advance of that meeting.

Background

Claxton Field at 1380 Central Avenue includes two softball fields with an overlapping multi-purpose field, trail access, picnic tables, restrooms, and a parking lot. It had a playground area, which was recently removed. This site served as a burn dump prior to the development of the Recycling and Transfer Station in the 1950s/1960s. Claxton was redeveloped as a recreational facility approximately 60 years ago, when additional soil fill was brought to the site and leveled to create the existing fields.

At the request of the Massachusetts Department of Environmental Protection (MassDEP) the Town of Needham engaged Weston & Sampson Inc (W & S) to provide sampling and analysis of the soil composition at Claxton Field. The Town's testing plan was submitted to MassDEP by W & S on February 9, 2023 and was approved on February 14, 2023.

A joint meeting of the Select Board, the Park and Recreation Commission, the Finance Committee, the Board of Health, the School Committee, and the Community Preservation Committee was held on February 15, 2023 to discuss the issue and provide public information about the potential risks at this property and provide contingency planning should the facility need to be closed.

Borings were conducted and completed on February 16, 2023 with samples sent out to a certified laboratory for the testing of:

- Polycyclic Aromatic Hydrocarbons (PAH);
- MCP 14 Metals;
- · Asbestos; and
- Dioxins.

Summary of results

Final results from the soil analysis were received on March 29, 2023 and then discussed internally and with W & S on March 30, 2023.

The testing results are consistent with our anticipated outcome scenario #2, the testing finds some contamination¹ at Claxton in the subsurface material, but low levels of contamination² in the surficial soil³, allowing the surface to continue to be used. The results for soil⁴ did indicate that the Town will trigger the Massachusetts Contingency Plan (MCP) which is administered through a Licensed Site Professional (LSP). The Town will continue to engage W & S as an LSP on their behalf to work on potential follow-up testing and reporting requirements. The Town will be working with W &S to file with MassDEP within the 120 days of notification of test results as required.

Continued Usage of Claxton

The results of the testing are consistent with the assumed contamination that W & S and the Town discussed after boring samples were taken in January of 2022. The testing found that the topsoil on the field is clean fill⁵, and that usage as an athletic field would not carry any inherent risk. At this time the Town has no data to indicate that usage of the field is unsafe and will be keeping the fields open.

The Town will need to work with MassDEP and file information with them accordingly. The Town would work with W & S and MassDEP to ensure that appropriate safeguards are in place during the renovation project. Materials would be kept on site and appropriately capped.

The detailed drafted memo is attached with results.

Stockpiled Materials and Laydown Space

The material that was in this area is permissible to remain on site and can be placed back in the area of generation and is not required to be removed from the site. The Town will be coordinating with the contractor as this project is completed to ensure that these appropriate measures are taken during the closeout of the project in restoring this area.

Renovation & Reporting

In the next few weeks, the Town will be working with W & S and MassDEP to provide more clarity on the site conditions and any modifications that may be needed to the intended field improvements. At this time, the only major change to the design will include the expansion of the installation of the geotextile membrane to go beyond the field limits to areas that were identified through sampling as having contaminated materials in the subsurface soil. This may also trigger additional permitting requirements through the Conservation Commission.

¹ Concentrations that require reporting to MassDEP

² Concentrations similar to natural soils which do not reporting to MassDEP

³ Top 12 inches

⁴ Greater than 12 inches below surface

⁵ Contaminant concentrations similar to natural soils

Based on current information, the Town will be moving forward with the project as designed and with the modifications added to the geotextile membrane. The Town will be requesting that the Community Preservation Committee (CPC) review this project for funding in the Fall of 2023. Should this project be funded by the CPC and at Town Meeting this project would go out to bid in the Winter of 2024, with construction anticipated to start in the Spring of 2024.

Based on the data collected to date, W & S has indicated that the Town will be able to close this site under the MCP at the conclusion of the construction project until such a time as the Town decides to do more construction work on this site.

Conclusions

While there are still more unknowns on this site that will be investigated by the Town, W & S, and MassDEP in the upcoming weeks, the Town understands that this facility is safe for athletics and recreation activities. The Town will work proactively to make any necessary alterations to the design of the renovation project, with the goal of keeping this project on its original timeline. As in any location, there are always unknowns that could affect the use of this property, but the information available, along with the consultation of W & S, would indicate that the Claxton Field can continue to function as an athletic facility now and into the future.

85 Devonshire Street, 3rd Floor, Boston, MA 02109 Tel: 617.412.4480

MEMORANDUM

TO: Ed Olsen – Superintendent, Parks and Forestry Division, Carys Lustig – Director of Public

Works, Stacey Mulroy - Director of Park and Recreation (Town of Needham)

FROM: Lee Koska, PE, Prasanta Bhunia, LSP (Weston & Sampson)

DATE: March 29, 2023

SUBJECT: Claxton Field Environmental Sampling and Analysis

As requested by the Massachusetts Department of Environmental Protection (MassDEP), Weston & Sampson performed soil sampling and analysis at Claxton Field, located at 1421 Central Avenue (the Site). MassDEP required this sampling because its historical use as a burn dump and a recent resident complaint regarding excavation and stockpiling of topsoil over a portion of the Site for use as a contractor laydown area.

Previous Investigations – 2021 and 2022

As part of a geotechnical investigation to design potential new sports lighting foundations, eleven soil borings were advanced across the Site on December 7, 2021. Ash and various solid waste materials (glass, metal fragments, ceramic and wood) were observed intermixed with granular fill materials underneath topsoil up to 15.5 feet below grade surface (bgs). A significant increase in ash and solid waste materials was observed at four feet bgs and deeper, consistent with the known Site history as a municipal burn dump. During this investigation, samples were not collected for laboratory analysis, but based on field observations (i.e., ash and solid waste in deeper samples), Weston & Sampson recommended shallow test pits to address potential exposure to park users.

On March 15, 2022, Weston & Sampson excavated twenty-one test pits throughout the Site. In general, topsoil throughout the Site was at least 10 to 12 inches thick, transitioning to soil intermixed with solid waste material at greater depths, except for a play yard where 4 to 7 inches of topsoil were identified over a landscaping fabric. As solid waste components (primarily glass) were identified at shallow depths beneath the landscaping fabric, this area was closed as a conservative measure and the playground equipment removed. Samples of the materials were not collected for laboratory analysis at the time of test pit excavations.

Use of a Portion of the Site as Contractor Laydown Area

In the Summer of 2022, the contractor of the Central Avenue Water Main Improvement Project stripped the topsoil from the construction laydown area and stockpiled the material on Site. We understand a resident submitted a complaint to MassDEP, and MassDEP subsequently required soil sampling and analysis to address potential contamination at the Site. As required, a sampling plan was submitted to MassDEP for approval. A summary of the subsurface investigation methodology, findings and recommendations for additional response actions under the MCP are presented below.

Site Investigation – 2023

In March 2023, Weston & Sampson advanced six soil borings (identified as SB-201 through SB-206) using a Geoprobe drill rig. Boring locations are depicted on Figure 1 – Sampling Plan. Soil conditions were logged in the field by an environmental engineer and field screened using a Photoionization Detector (PID) for the presence of Total Organic Vapors (TOV). Three samples were collected from each boring for the following intervals: 0 to 1-foot bgs, 2 to 4 feet bgs and 4 to 6 feet bgs. Location SB-206 encountered refusal (bedrock)

at 5 feet bgs so the third interval sampled was 4 to 5 feet bgs. Samples collected were submitted for laboratory analysis of:

- Polycyclic Aromatic Hydrocarbons (PAHs) via EPA Method 8270;
- MCP 14 Metals via EPA Method 6010 / 7417;
- Asbestos via Polarized Light Microscopy (PLM); and
- Dioxins via EPA Method 8290 (nine samples total).

In addition, one duplicate sample was collected from B-203 from 4 to 6 feet bgs for PAHs, MCP 14 Metals, and Asbestos for quality assurance / quality control (QA/QC) purposes.

One 10-point composite sample was also collected from the stockpile located within the contractor laydown area for laboratory analysis of the same constituents of concern (COCs) identified above. Each grab was collected with hand tools from excavations 1 to 2 feet into the stockpile surface and field screened with a PID. Note that location B-202 was also located within the construction laydown area close to the existing stockpile.

At the request of MassDEP, Weston & Sampson also advanced a series of perimeter borings (PER-1 through PER-8) to visually assess the potential presence of solid waste materials at the park boundaries. These locations were advanced approximately five feet from the existing tree line. Analytical samples were not collected from the PER- boring series. Limited quantities of solid waste components were encountered in all locations with the exception of PER-7, which encountered shallow refusal on bedrock. Boring logs from all locations assessed during this investigation round are presented as Attachment A.

Soil Sampling Results

<u>Topsoil:</u> Twelve inches of topsoil was consistently observed with the exception of location B-206, where ash and solid waste materials were observed at approximately eleven inches bgs. Asbestos containing materials were not detected in topsoil. Laboratory analytical results of topsoil (0 – 1' interval) were below RCS-1 standards with the exception of lead at B-206 (330 mg/kg) and Dioxins at B-203 (30 ng/kg) which slightly exceeded their respective RCS-1 standards of 200 mg/kg and 20 ng/kg, respectively. Based on our visual observations, this exceedance appears to be associated with the presence of solid waste materials and ash at approximately eleven inches bgs. PAHs and Dioxins were below RCS-1 standards in topsoil. PID headspace readings were non-detect in the topsoil material.

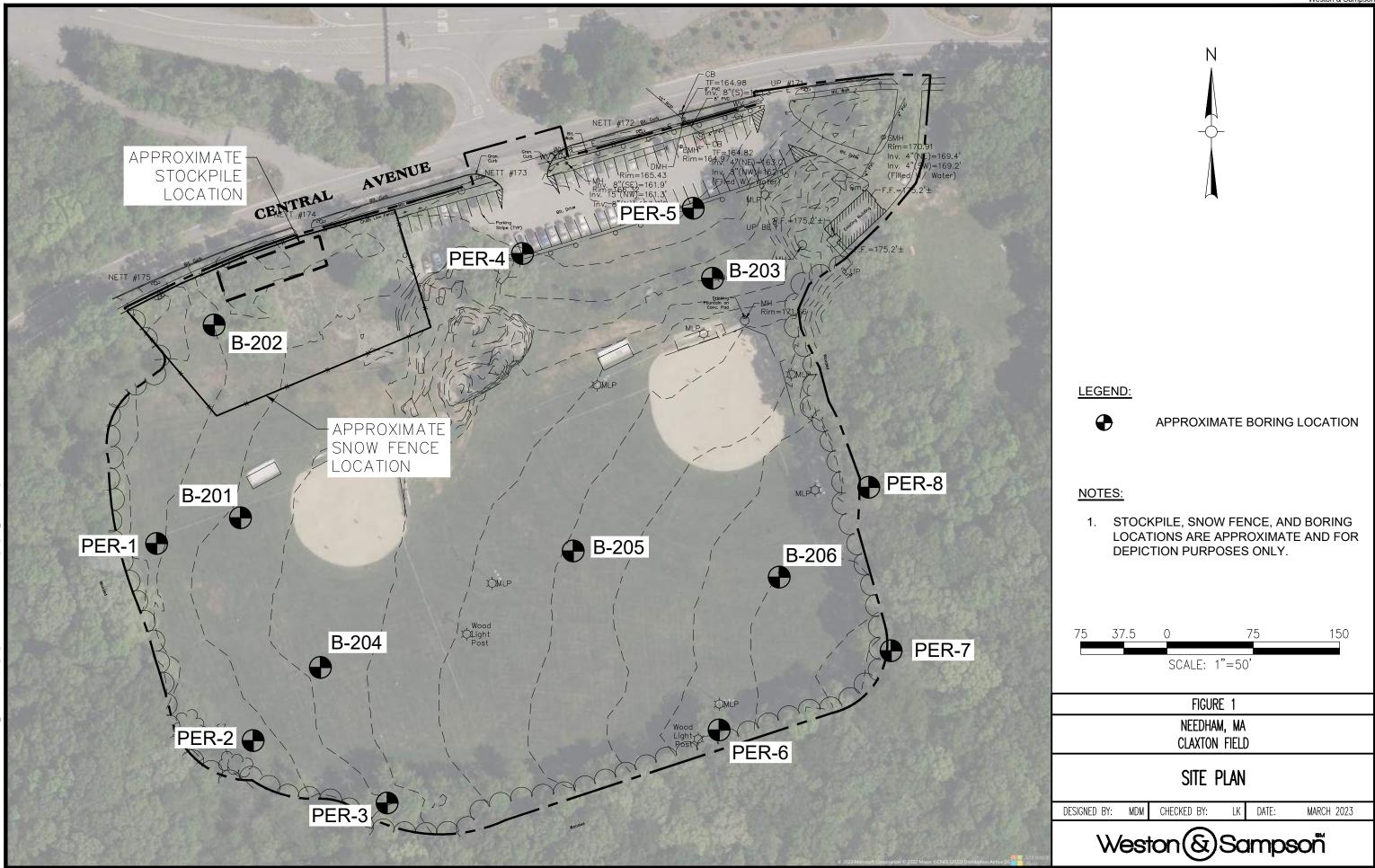
<u>Deeper Soil:</u> Deeper soil from 1' to 6' bgs contained solid waste materials (brick, glass, wood, metal, porcelain) and ash intermixed with soil. Elevated concentrations of lead (up to 4,650 mg/kg), zinc (up to 1,630 mg/kg) and various PAHs were detected above RCS-1s. These elevated concentrations were generally detected at depths where ash and solid waste were observed. Similar to topsoil, asbestos was not detected in the submitted samples. PID headspace readings were non-detect in the deeper soil material.

Dioxin 2,3,7,8-TCDD exceeded RCS-1 in 5 of the 6 deeper samples. Note that only 2,3,7,8-TCDD has a published RCS-1 standard under the MCP. The maximum concentration detected was 74 nanograms/kilogram (ng/kg), which is below the Upper Concentration Limit (UCL) of 500 ng/kg and may require removal under the MCP. Full analytical results for all dioxins analyzed are presented in Table 2 – Soil Analytical Results: Dioxins for reference.

<u>Stockpile:</u> Results from the topsoil stockpile sample (CF-Stockpile) included detections of various metals and PAHs, slightly above RCS-1 standards for acenaphthylene, benzo(a)pyrene and lead. Soil results however were generally lower than the concentrations in deeper soil. PID headspace readings were non-detect in the stockpile material.

Based on the data, Weston & Sampson performed a preliminary risk assessment and indicated soil from 0 – 1' bgs does not pose a significant risk for a park user or a resident. However, deeper soil (greater than 1' bgs) does pose a condition of significant risk, mainly due to the presence of lead and to a lesser extent of Dioxin (2,3,7,8-TCDD).

Summary and Recommendations


Concentrations of metals (lead and zinc), PAHs, and Dioxins exceeded RCS-1 standards, which requires a 120-day notification to MassDEP under the MCP. Therefore, the Town should notify MassDEP within this timeframe of their knowledge of the data. Following notification, MassDEP will assign a Release Tracking Number (RTN) and the Site will be regulated going forward under the MCP. Please note that the MCP will require additional response actions, including further assessment, detailed risk characterization and reports for park construction and Site closure.

Attachments:
Figures
Tables
Boring Logs
Laboratory Analytical Reports

Figures

Tables

Soil Analytical Results Claxton Field Needham, MA

					Location,	Sample Date, Lab S	Sample ID, Sample D	epth (feet)			
Parameter				B-201		B-:	202		B-203		DUPLICATE
	RCS-1	Units	23B0634-01	23B0634-02	23B0634-03	23B0634-04	23B0634-05	23B0634-06	23B0634-07	23B0634-08	23B0634-18
	Concentration		02/16/2023	02/16/2023	02/16/2023	02/16/2023	02/16/2023	02/16/2023	02/16/2023	02/16/2023	02/16/2023
			0-1	2-4	4-6	0-1	2-4	0-1	2-4	4-6	4-6
olycyclic Aromatic Hyd	ocarbons (PAHs)										
-Methylnaphthalene	0.7	mg/kg	<0.287	<0.302	<0.645	<0.498	<0.307	<0.378	<0.332	< 0.330	<0.278
cenaphthene	4	mg/kg	<0.287	<0.302	<0.645	<0.498	<0.307	<0.378	<0.332	<0.330	<0.278
cenaphthylene	1	mg/kg	<0.287	<0.302	<0.645	<0.498	<0.307	<0.378	<0.332	<0.330	<0.278
nthracene	1000	mg/kg	<0.287	<0.302	<0.645	<0.498	<0.307	<0.378	<0.332	<0.330	<0.278
enzo(a)anthracene	7	mg/kg	<0.287	0.523	0.827	0.871	<0.307	<0.378	0.457	0.856	0.911
enzo(a)pyrene	2	mg/kg	<0.287	0.517	0.79	0.85	<0.307	<0.378	0.472	0.911	0.83
` '' *	7		<0.287	0.338	<0.645	0.667	<0.307	<0.378	0.417	0.788	0.802
enzo(b)fluoranthene	1000	mg/kg	<0.287	0.338	<0.645	<0.498	<0.307	<0.378	<0.332	0.766	0.802
Benzo(g,h,i)perylene		mg/kg									
enzo(k)fluoranthene	70	mg/kg	<0.287	0.321	<0.645	0.623	<0.307	<0.378	0.378	0.729	0.486
Chrysene	70	mg/kg	<0.287	0.763	1.16	0.975	<0.307	<0.378	0.539	0.961	0.922
Dibenzo(a,h)Anthracene	0.7	mg/kg	<0.287	<0.302	<0.645	<0.498	<0.307	<0.378	<0.332	<0.330	<0.278
luoranthene	1000	mg/kg	<0.287	0.729	0.927	1.82	<0.307	<0.378	0.9	1.59	1.56
luorene ndeno(1,2,3-cd)Pyrene	1000 7	mg/kg	<0.287 <0.287	<0.302 0.319	<0.645 <0.645	<0.498 <0.498	<0.307 <0.307	<0.378 <0.378	<0.332 <0.332	<0.330 0.58	<0.278 0.492
aphthalene	4	mg/kg mg/kg	<0.287	<0.302	<0.645	<0.498	<0.307	<0.378	<0.332	< 0.330	<0.278
Phenanthrene	10	mg/kg	<0.287	0.791	0.663	1.17	<0.307	<0.378	0.546	0.645	0.956
Pyrene	1000	mg/kg	<0.287	1.1	1.49	1.6	<0.307	<0.378	0.752	1.3	1.59
j. une	.000	99	0.20.				0.00.	0.07.0	<u> </u>		
otal Metals			•	•				•			
ntimony	20	mg/kg	<5.03	<5.24	<5.74	<5.10	<5.94	<1.36	<6.18	11.9	<5.62
rsenic	20	mg/kg	4.84	8.29	5.45	3.13	40.6	8.88	7.17	10.9	8.13
Barium	1000	mg/kg	44.7	409	78	46.3	304	72.5	167	155	287
Beryllium	90	mg/kg	0.29	<0.12	<0.13	0.34	0.27	0.65	0.33	0.63	0.33
admium	70	mg/kg	<0.50	8.91	0.63	<0.51	3.11	<0.68	1.27	<0.63	1.85
hromium	100	mg/kg	12.7	104	19.5	11.7	35.5	27.1	22.2	8.12	20.2
ead	200	mg/kg	112 0.042	399 0,271	302 0.107	129 0.085	1030 0.647	50.2	319 0.193	147 0.37	455 0.406
lercury ickel	600	mg/kg	9.46	107	27.8	8.2	32.8	0.114 16.5	13.2	18.2	23.6
elenium	400	mg/kg mg/kg	9.46 <5.03	<1.05	27.8 <1.15	8.2 <5.10	32.8 <1.19	16.5 <6.82	13.2 <6.18	1 8.2 <6.31	23.6 <5.62
ilver	100	mg/kg	<0.5	2.62	<2.87	<0.51	2.97	<0.68	<0.62	<0.63	<0.56
hallium	8	mg/kg	<5.03	<5.24	<5.74	<5.10	<5.94	<0.68	<6.18	<6.31	<5.62
anadium	400	mg/kg	20.8	39.8	13.9	15.4	25.1	34.7	21.9	24.7	18.9
inc	1000	mg/kg	63	1630	356	76.8	639	75.1	443	613	926
ioxins											
,3,7,8-TCDD TEQ	20	ng/kg	NT	NT	NT	NT	NT	30	74	16	NT
a baataa											
sbestos otal Asbestos	~	%	l ND	ND	ND	ND	ND	l ND	ND	ND	ND
JIAI MODEOLUS	~	70	IND	טאו	טאו	טאו	IND	טאו	חאו	טאו	טא

QC by:

NOTES:

~ = No standard available.

= value not detected above laboratory reporting limit <VALUE

= value detected above laboratory reporting limit

VALUE

= value detected above RCS-1 Criteria VALUE

ABBREVIATIONS:

mg/Kg = Milligram per kilogram
ng/kg = Nanograms per kilogram
RCS-1 = Reportable Concentration in Soil, Category S-1 (2014)

TCDD = tetrachlorodibenzo-p-dioxin ND = Non-detect

NT = Not tested

Soil Analytical Results Claxton Field Needham, MA

			Location, Sample Date, Lab Sample ID, Sample Depth (feet)											
Parameter				B-204			B-205			B-206		CF-STOCKPILI		
	RCS-1	Units	23B0634-09	23B0634-10	23B0634-11	23B0634-12	23B0634-13	23B0634-14	23B0634-15	23B0634-16	23B0634-17	23B0634-19		
	Concentration		02/16/2023	02/16/2023	02/16/2023	02/16/2023	02/16/2023	02/16/2023	02/16/2023	02/16/2023	02/16/2023	02/16/2023		
			0-1	2-4	4-6	0-1	2-4	4-6	0-1	2-4	4-5	N/A		
Polycyclic Aromatic Hydr	ocarbons (PAHs)													
2-Methylnaphthalene	0.7	mg/kg	<0.295	<0.255	<0.319	<0.295	<0.281	<0.346	<0.315	<0.284	<0.263	<0.338		
Acenaphthene	4	mg/kg	<0.295	<0.255	<0.319	<0.295	<0.281	<0.346	<0.315	<0.284	<0.263	<0.338		
Acenaphthylene	1	mg/kg	<0.295	1.56	<0.319	<0.295	<0.281	<0.346	<0.315	<0.284	<0.263	1.46		
Anthracene	1000	mg/kg	<0.295	0.601	<0.319	<0.295	<0.281	<0.346	<0.315	<0.284	<0.263	0.891		
Benzo(a)anthracene	7	mg/kg	<0.295	2.29	<0.319	<0.295	<0.281	<0.346	<0.315	<0.284	<0.263	2.36		
			<0.295		<0.319	<0.295	<0.281	<0.346		<0.284	<0.263	2.19		
Benzo(a)pyrene	7	mg/kg		2.99					<0.315					
Benzo(b)fluoranthene	•	mg/kg	<0.295	1.96	<0.319	<0.295	<0.281	<0.346	<0.315	<0.284	<0.263	1.85		
Benzo(g,h,i)perylene	1000	mg/kg	<0.295	1.77	<0.319	<0.295	<0.281	<0.346	<0.315	<0.284	<0.263	1.32		
Benzo(k)fluoranthene	70	mg/kg	<0.295	1.99	<0.319	<0.295	<0.281	<0.346	<0.315	<0.284	<0.263	1.4		
Chrysene	70	mg/kg	<0.295	3.55	<0.319	<0.295	0.318	<0.346	<0.315	<0.284	<0.263	2.69		
Dibenzo(a,h)Anthracene	0.7	mg/kg	<0.295	0.447	<0.319	<0.295	<0.281	<0.346	<0.315	<0.284	<0.263	<0.338		
Fluoranthene	1000	mg/kg	<0.295	2.89	<0.319	<0.295	<0.281	<0.346	<0.315	<0.284	<0.263	3.92		
Fluorene	1000	mg/kg	<0.295	<0.255	<0.319	<0.295	<0.281	<0.346	<0.315	<0.284	<0.263	0.487		
Indeno(1,2,3-cd)Pyrene	7	mg/kg	<0.295	1.7	<0.319	<0.295	<0.281	<0.346	<0.315	<0.284	<0.263	1.42		
Naphthalene	4	mg/kg	<0.295	<0.255	<0.319	<0.295	<0.281	<0.346	<0.315	<0.284	<0.263	<0.338		
Phenanthrene	10 1000	mg/kg	<0.295 <0.295	1.77 5.05	<0.319 <0.319	<0.295 <0.295	<0.281 0.36	<0.346 <0.346	<0.315 <0.315	<0.284 <0.284	<0.263 <0.263	4.14 4.57		
Pyrene	1000	mg/kg	<0.295	5.05	<0.319	<0.295	0.36	<0.346	<0.315	<0.284	<0.263	4.57		
Total Metals														
Antimony	20	mg/kg	<5.79	<4.89	14.7	<5.61	<5.45	<5.85	<5.86	6.85	<4.98	<6.4		
Arsenic	20	mg/kg	<2.89	<2.45	8.31	<2.81	3.15	10.6	5.03	13.9	<2.49	4.97		
Barium	1000	mg/kg	31.8	23.7	336	23.7	47.9	155	104	85.9	57.2	88.7		
Beryllium	90	mg/kg	0.32	0.18	<0.14	0.25	0.25	0.67	0.39	0.33	0.34	0.26		
Cadmium	70	mg/kg	<0.58	<0.49	3.05	<0.56	< 0.55	<0.58	<0.59	< 0.53	<0.5	0.7		
Chromium	100	mg/kg	14.1	14	88.3	14.5	14.9	10.4	17.4	16	12	14		
Lead	200	mg/kg	14.6	19.1	4650	22.1	50.6	1650	330	319	<9.97	206		
Mercury	20	mg/kg	0.061	0.091	0.145	0.065	0.409	0.654	0.088	0.223	0.034	0.433		
Nickel	600	mg/kg	9.64	7.33	68.7	8.15	12	16.8	16.4	37.4	8.75	9.97		
Selenium	400	mg/kg	<5.79	<4.89	<1.15	<5.61	<5.45	<5.83	<5.86	<1.06	<4.98	<6.4		
Silver	100	mg/kg	<0.58	<0.49	<5.76	<0.56	<0.55	<0.58	<0.59	<1.06	<0.5	<0.64		
Thallium	8	mg/kg	<5.79	<4.89	<5.76	<5.61	<5.45	<5.83	<5.86	<5.3	<4.98	<6.4		
Vanadium	400	mg/kg	25.3	17.4	23.8	18.7	35.1	38.2	24.3	21.5	21.7	17.2		
Zinc	1000	mg/kg	32.7	35.5	1120	29.2	69	329	199	341	24.9	199		
Dioxins														
2,3,7,8-TCDD TEQ	20	ng/kg	5.2	62	27	3.4	54	27	NT	NT	NT	NT		
Asbestos														
Total Asbestos	~	%	ND	ND	ND	ND	l ND	ND	ND	ND	ND	ND		
		,,,	110	.,,,,			.,,,		5	٠.٠	.15	1,12		
(C by:	J.		•	•			•		•		•	•		

QC by:

NOTES:

 \sim = No standard available.

= value not detected above laboratory reporting lim <VALUE

= value detected above laboratory reporting limit VALUE

= value detected above RCS-1 Criteria VALUE

ABBREVIATIONS:

mg/Kg = Milligram per kilogram

ng/kg = Nanograms per kilogram RCS-1 = Reportable Concentration in Soil, Category S-1 (2014)

TCDD = tetrachlorodibenzo-p-dioxin

ND = Non-detect

NT = Not tested

Table 2 Soil Analytical Results: Dioxins Claxton Field Needham, MA

	MCP Method 1 Standards			Sample ID, Sample Date, Sample Depth (feet)										
Parameter	WICE WELLIO	u i Standards	Units	B-203				B-204		B-205				
raiailletei	S-1/GW-2	S-1/GW-3		2/16/2023 0-1	2/16/2023 2-4	2/16/2023 4-6	2/16/2023 0-1	2/16/2023 2-4	2/16/2023 4-6	2/16/2023 0-1	2/16/2023 2-4	2/16/2023 4-6		
Dioxins							<u> </u>							
2,3,7,8-TCDF	~	~	ng/Kg	0.99	1.9	3.7	0.49	2.8	6.3	< 0.29	34	8.5		
Total TCDF	~	~	ng/Kg	12	33	48	7.0	140	170	2.8	560	300		
2,3,7,8-TCDD	~	~	ng/Kg	0.54	0.46	0.39	0.21	0.28	0.51	< 0.069	3.3	0.69		
Total TCDD	~	~	ng/Kg	5.8	13	14	1.7	30	21	< 0.069	120	26		
1,2,3,7,8-PeCDF	~	~	ng/Kg	1.3	1.6	2.1	0.57	47	5.1	< 0.23	9.6	4.7		
2,3,4,7,8-PeCDF	~	~	ng/Kg	2.1	2.7	3.2	1.1	14	9.9	0.35	22	11		
Total PeCDF	~	~	ng/Kg	28	29	37	18	140	110	7.3	230	130		
1,2,3,7,8-PeCDD	~	~	ng/Kg	4.8	2.0	0.89	0.39	1.5	1.3	0.19	3.1	1.4		
Total PeCDD	~	~	ng/Kg	16	16	14	3.0	35	21	1.0	51	19		
1,2,3,4,7,8-HxCDF	~	~	ng/Kg	3.8	2.2	3.2	0.81	9.3	8.0	0.53	6.2	5.8		
1,2,3,6,7,8-HxCDF	~	~	ng/Kg	4.1	1.2	2.7	0.67	9.1	6.4	0.37	5.6	5.4		
2,3,4,6,7,8-HxCDF	~	~	ng/Kg	2.2	2.4	3.1	1.2	12	7.9	0.49	8.7	7.0		
1,2,3,7,8,9-HxCDF	~	~	ng/Kg	0.77	0.92	0.92	0.51	2.6	2.5	0.29	1.5	1.0		
Total HxCDF	~	~	ng/Kg	54	53	36	16	120	81	7.4	110	74		
1,2,3,4,7,8-HxCDD	~	~	ng/Kg	5.5	2.6	1.3	0.50	1.9	1.2	0.39	1.4	1.3		
1,2,3,6,7,8-HxCDD	~	~	ng/Kg	9.3	17	2.6	1.1	3.4	2.6	0.66	3.3	0.80		
1,2,3,7,8,9-HxCDD	~	~	ng/Kg	9	8.2	1.9	0.80	2.1	1.9	0.52	2.6	0.53		
Total HxCDD	~	~	ng/Kg	74	120	27	9.3	56	28	6.7	42	11		
1,2,3,4,6,7,8-HpCDF	~	~	ng/Kg	25	39	22	6.7	120	26	3.4	46	33		
1,2,3,4,7,8,9-HpCDF	~	~	ng/Kg	1.6	2.8	1.2	0.48	1.7	2.8	< 0.11	1.4	0.63		
Total HpCDF	~	~	ng/Kg	60	180	40	12	130	42	6.8	57	37		
1,2,3,4,6,7,8-HpCDD	~	~	ng/Kg	120	500	41	12	22	33	16	19	3.3		
Total HpCDD	~	~	ng/Kg	310	940	82	24	56	59	32	39	7.5		
OCDF	~	~	ng/Kg	45	83	18	6.6	25	14	5.0	24	4.0		
OCDD	~	~	ng/Kg	1600	3700	270	95	160	160	140	80	10		
TCDD TEQ	20	20	ng/Kg	30	74	16	5.2	62	27	3.4	54	27		

NOTES:

~ = No standard available.

<VALUE</pre> = value not detected above laboratory reporting limit

.....

= value detected above laboratory reporting limit

VALUE

= value detected above RCS-1 Criteria

ABBREVIATIONS:

ng/kg = Nanograms per kilogram

RCS-1 = Reportable Concentration in Soil, Category S-1 (2014)

TCDD TEQ = Total 2,3,7,8-TCDD Toxic Equivalent Using MADEP Factors

Boring Logs

						PRO	<u>JECT</u>		BORING No			B-201-1			
Weston & Sampson					Claxton Field				SHEET		1 OF 1				
						ı	Needh	am, MA	Project No. CHKD BY			ENG23-0164 ACE			
BORING Co. Bronson Drilling												See attached plan			
FOREN		Mottho	D	an Bronson				UND SURFA			N	NR DATUM NR			
WSE R			w McGuire,	Laura McG	overn		DATE	E START			DATE	•	2/16/23		
SAMPL	.EK:	Geopro	ppe					DATE	TIME	ROUNDWAT WATER AT		NG AT	STABILIZATION TIME		
CASIN	G:	2" insid	e diameter w	ith 5' sleeve				2/16/23	NR	NR	Ν	IA	NA		
CASING	SIZE:	2"			OTHER:										
DEPTH	CASING	N-		AMPLE	DI OMO/CII	PID		SAMPL	E DESC	RIPTION		NOTES	STRATUM DESCRIPTION		
(feet)	(blows/ft) NA	No.	REC/PEN (In)	DEPTH (ft.)	BLOWS/6"	(ppm)		Dark brown F SA	AND with	n some silt, trace)		TOPSOIL		
							organi	cs; moist					TOTOGIL		
2-								" Light brown F-0 ace debris (glass		•	el, some				
_		0.4	40/70	0.0		0.0				•		(4)			
		S-1	40/72	0-6	NA	0.0		" Gray C SAND v vood, glass); mo		some debris (gra	ay ash,	(1)	FILL		
4 —							47" 60	" F-C SAND; dry	r no odo						
						0.0	47 -00	1 -C OAND, dry	, 110 000	'					
6-							60"-72	" Black to brown	-						
								End	of Borin	g at 6'					
8-															
10-															
10															
12-															
14 –															
14															
16 -															
	↓														
	GRANU				/E SOILS	NOTI		I D 004	(0.4)	2 204 (0 4) -	I D O	04 (4 0)!!t! D		
	WS/FT)-4		ENSITY LOOSE	BLOWS/FT 0-2	V. SOFT			inples 6-201 I and B-201-2) collected across B- sbestos		
	-10	L	OOSE	2-4	SOFT					,					
)-30		DENSE	4-8	M. STIFF										
)-50		ENSE	8-15	STIFF										
>	50	V.	DENSE	15-30 > 30	V. STIFF HARD										
GENERA	L NOTES:							JNDARY BETWEE							
		,						S AT TIMES AND U DUE TO OTHER F							
		MEAS	SUREMENTS AR	RE MADE.						ı	B 0 = ::	10.1:	D 004 4		
											BORIN	NO.	B-201-1		

							PRO)JECT		BORING No		B-201-2			
Weston & Sampson					Claxton Field				SHEET		1 OF 1				
	VVCO		0,00	arripod				am, MA		Project No.			NG23-0164		
										CHKD BY			ACE		
BORIN FOREM				nson Drillin an Bronson				ING LOCATION UND SURFA		=\/		ee attached plan NR DATUM NR			
WSE R		Matthe	ew McGuire,					E START			DATE		2/16/23		
SAMPL	.ER:	Geopro	be						G	ROUNDWAT	ER OE	SERVA	ATIONS		
0.4.011.1	_							DATE	TIME	WATER AT		NG AT	STABILIZATION TIME		
CASIN	G:	2" insid	le diameter w	ith 5' sleeve				2/16/23	NR	NR	N	IA	NA		
CASING	SIZE:	2"			OTHER:										
DEPTH	CASING			AMPLE	I	PID		SAMPL	E DESC	RIPTION		NOTES	STRATUM DESCRIPTION		
(feet)	(blows/ft)	No.	REC/PEN (in)	DEPTH (ft.)	BLOWS/6"	(ppm)	0"-12"	Dark brown F S	AND with	some silt_trace					
ŭ								cs; moist					TOPSOIL		
2-															
		S-1	20/72	0-6	NA	0.0	401 =0					(1)			
								" Light brown F-0 ace debris (glas:			el, some		FILL		
4-															
6															
6-								End	of Borin	g at 6'					
8-															
0-															
10-															
10															
12-															
12															
14 —															
'-															
16-															
. •															
	↓			0011500	(= 00 !! 0										
	GRANU ws/ft		DILS ENSITY	COHESIN BLOWS/FT	/E SOILS DENSITY	NOTI		mples R-206	(0-1) F	3-206 (2-4) s	and R-2	06 (4-6) collected across B-		
)-4		LOOSE	0-2	V. SOFT			and B-206-2							
	-10		OOSE	2-4	SOFT										
)-30)-50		DENSE DENSE	4-8 8-15	M. STIFF STIFF										
	50		DENSE	15-30	V. STIFF										
OENED:	LNOTES	2) T ()= ==	TDATIES	> 30	HARD	DCV	ATE 5.5	INDARY BETTE	N 60" =	VDE0 TD	ONO	/ DE 65::	NIA!		
JENERA	L NOTES:							UNDARY BETWEE S AT TIMES AND I							
		,						DUE TO OTHER I							
		MEAS	SUREMENTS AR	RE MADE.						I	BORIN	IC No	B-201-2		

							PRC	<u>JECT</u>		BORING No			B-202-1
,	11/00	ton	(&) Sc	mno	SM		Clayte	on Field		SHEET		1	OF 1
	WES	IOII	(0)00	an ipac				nam, MA		Project No.			IG23-0164
							10001	iaiii, ivii t		CHKD BY			ACE
BORIN	G Co		Bro	nson Drillin	ď		BOR	ING LOCATION	NC		See	attache	ed nlan
FORE				an Bronson			•	UND SURFA		=V.			DATUM NR
WSE R		Matthe	ew McGuire,					E START			DATE		2/16/23
CAMDI	ED:									ROUNDWAT	ED OF	OCED\/A	TIONS
SAMPL	EK.	Geopro	bbe				•	DATE	TIME	WATER AT		NG AT	STABILIZATION TIME
CASIN	G:	2" insid	le diameter w	ith 5' sleeve			•	2/16/23	NR	NR		IA	NA
				-									
CASING	SIZE:	2"			OTHER:								
DEPTH	CASING		SA	AMPLE		PID		SAMDI	E DESC	RIPTION		NOTES	STRATUM DESCRIPTION
(feet)	(blows/ft)	No.	REC/PEN (in)	DEPTH (ft.)	BLOWS/6"	(ppm)						NOTES	STRATOW DESCRIPTION
0	NA							5" Dark brown F-	M SAND	with little grave	I, little		TOPSOIL
						NR	rock; n	noist					
						IVIX	10.5"-2	27" Light gray sa	ndv GRA	AVEL with ash: n	noist		
2-		S-1	32/48	0-4	NA			g g,	,	,		(2)	
							27"-48	" Brown to dark	brown F-	C SAND with litt	tle		FILL
						0.1	_	, trace silt, trace	debris (g	ılass, metal, bric	k,		
4 —							porcel	ain); moist				(4)	
								End of Bo	oring at	4' (Refusal)		(1)	
6-		1											
8-													
10													
10 –		1											
12 –		ł											
4.4													
14 –		1											
16 -		ł											
	. ↓												
	GRANU			COHESI		NOTI							
	WS/FT		ENSITY	BLOWS/FT	DENSITY		1. Re	fusal at 4' (su	ispect l	bedrock).			
)-4 -10		LOOSE .OOSE	0-2 2-4	V. SOFT SOFT		2 Sa	mnles R-202	(0-1) a	nd B-202 (2-/	4) colle	cted ac	ross B-202-1 and B-
)-30		DENSE	4-8	M. STIFF			2 for PAHs, M					. 555 B EQE 1 GIN D-
)-50		ENSE	8-15	STIFF			,		,	- **		
>	50	V.	DENSE	15-30	V. STIFF								
				> 30	HARD								
GENERA	L NOTES:							UNDARY BETWEE					
								S AT TIMES AND U DUE TO OTHER F					
			SUREMENTS AR		WOONDWAIE	I VIVIA I	JUUUK	POL 10 OTHER	AUTURS	, IIIAN INUSE PI	YESENI /	si i⊓⊈ III	VIL.
										j	BORIN	IG No.	B-202-1

							DDC	LECT		DODING N			B-202-2
							PRU	<u>DJECT</u>		BORING No			D-202-2
1	Wes	ton	(&) Sc	mpsom	วกั		Claxto	on Field		SHEET		1	OF <u>1</u>
			0			ı	Needh	nam, MA		Project No.		EN	IG23-0164
										CHKD BY			ACE
BORIN	G Co.		Bro	nson Drillin	g		BOR	ING LOCATION	ON		See	attache	ed plan
FOREM				an Bronson				UND SURFA					DATUM NR
WSE R	EP.	Matthe	ew McGuire,	Laura McG	Govern		DATI	E START		2/16/23	DATE	END	2/16/23
SAMPL	ER:	Geopro	be				•		G	ROUNDWAT	ER OF	BSERVA	ATIONS
	_							DATE	TIME	WATER AT		NG AT	STABILIZATION TIME
CASIN	3 :	2" insid	le diameter w	ith 5' sleeve				2/16/23	NR	NR	N	IA	NA
CASING	SIZE:	2"			OTHER:		•						
DEPTH	CASING		SA	AMPLE		PID							
(feet)	(blows/ft)	No.	REC/PEN (in)		BLOWS/6"	(ppm)		SAMPL	E DESC	RIPTION		NOTES	STRATUM DESCRIPTION
, O	ŅA			, ,			0" - 5"	Dark brown F-M	SAND,	little gravel, little	rock		TOPSOIL
							5" - 27	" Light brown to	light grav	v F-C SAND with	some		
								; moist		,			
2	-	S-1	32/54	0-4.5	NA	0.0						(2)	
			02/04	0 4.0	1.0.	0.0		6" Dark brown to			ttle	(2)	FILL
							gravei	, trace debris (gl	ass, Drici	k, wood); moist			
4								i0" ASH, trace de					
•							50" - 5	4" Dark brown S				(4)	
								End of Bo	ring at 4	.5' (Refusal)		(1)	
6	+	1											
8													
ŭ													
10		l											
12													
14 —		1											
16													
	+												
	GRANU	LAR SO	DILS	COHESI	/E SOILS	NOTI							
	WS/FT		ENSITY	BLOWS/FT	DENSITY		1. Re	fusal at 4.5' (suspec	t bedrock).			
)-4 -10		LOOSE .OOSE	0-2 2-4	V. SOFT SOFT		2 5-	imples B 202	(O 1) c	nd B 202 (2)	1) 0011-	oted as	ross B-202-1 and B-
	-10)-30		DENSE	2-4 4-8	M. STIFF			imples b-202 2 for PAHs, M					1033 D-202-1 and D-
)-50)-50		DENSE	8-15	STIFF		_02	5. 1 74115, 10	J. 14	o.a.o, and c			
	50		DENSE	15-30	V. STIFF								
				> 30	HARD								
GENERA	L NOTES:							UNDARY BETWEE					
								S AT TIMES AND					
			CTUATIONS IN TI		ROUNDWA [E	K MAY	JUUUR	DUE TO OTHER I	-ACTORS	THAN THOSE PE	KESENI	AI IHE III	VIE

BORING No.

B-202-2

							PRC	<u>JECT</u>		BORING No			B-203-1
	11/00	ton	(&) Sc	mno	SM		Cloyd	on Field		SHEET		1	OF 1
	Wes	IOI	(0)50	ampso				iam, MA		Project No.			NG23-0164
								,		CHKD BY			ACE
BORIN	G Co.		Bro	nson Drillin	g		BOR	ING LOCATION	ON		See	attache	ed plan
FORE				an Bronson			•	UND SURFA					DATUM NR
WSE R	EP.	Matthe	ew McGuire,	Laura McG	Govern		DATE	START		2/16/23	DATE	END	2/16/23
SAMPL	ER:	Geopro	be							ROUNDWAT			
CASIN	G.	2" insid	le diameter w	ith 5' sleeve			-	DATE 2/16/23	TIME NR	WATER AT NR		NG AT IA	STABILIZATION TIME NA
0/10111	O .	2 111310	ic diameter w	III O SICCVC			•	2/10/20	INIX	IVIX			14/1
CASING	SIZE:	2"			OTHER:								
DEPTH				AMPLE	1	PID		SAMPL	E DESC	RIPTION		NOTES	STRATUM DESCRIPTION
(feet)	(blows/ft)	No.	REC/PEN (in)	DEPTH (ft.)	BLOWS/6"	(ppm)	0" ₋ 12	" Dark brown F \$	SAND wi	th some silt trac	,0		
0								cs; moist	JAIND WI	ur some siit, trac	,6		TOPSOIL
							12" - 2	9" Gray to black	F-C SAN	ND with some sil	t some		
2-								ace glass; moist			.,		
		S-1	40/70	0.6	NIA	0.0	29" - 3	7.5" Gray to blac	k C SAN	ID with some gra	avel,	(4)	
		5-1	43/72	0-6	NA	0.0		ash, trace glass;				(1)	FILL
4 —							07.5"	7011 D		E 0 0 4 N D : ::			
						0.0		72" Dark brown some ash, trace					
						0.0	moist						
6-								Fnd	of Borin	n at 6'			
								Liid	01 001111	guto			
8-													
10-													
12-													
14 —													
16-													
	→			0011201	(F. 0.011.0	NOT							
BI O	GRANU ws/ft		DILS DENSITY	BLOWS/FT	/E SOILS DENSITY	NOT		mples B-203	(0-1) F	3-203 (2-4) a	nd B-2	03(4-6)	collected across B-
()-4	V.	LOOSE	0-2	V. SOFT		203-1	and B-203-2	for PA	Hs, MCP 14	metals	, asbes	tos, and dioxins.
	-10 . 30		OOSE	2-4	SOFT				e colle	cted at (4-6')	for PAI	Hs, MC	P 14 metals, and
)-30)-50		DENSE DENSE	4-8 8-15	M. STIFF STIFF		asbe	SIOS.					
	50		DENSE	15-30	V. STIFF								
OE! :== :	. NOT=			> 30	HARD		.=-:						
JENERA	AL NOTES:	,						JNDARY BETWEE S AT TIMES AND U					
		,						DUE TO OTHER F					
		MEAS	SUREMENTS AR	RE MADE.									

BORING No.

B-203-1

							PRO	<u>JECT</u>		BORING No			B-203-2
1	1/00	ton	(&) Sc	mner	SM		Clayto	on Field		SHEET		1	OF 1
	WES	IOII	(0)50	al libse				nam, MA		Project No.			NG23-0164
								,		CHKD BY			ACE
BORIN	G Co		Bro	nson Drillin	a		BOR	ING LOCATION	ON		See	attache	ed plan
FOREM				an Bronson				UND SURFA		EV.			DATUM NR
WSE R	EP.	Matthe	ew McGuire,	Laura McG	overn		DATI	E START	2	2/16/23	DATE	END	2/16/23
SAMPL	ER:	Geopro	be						G	ROUNDWAT	ER OF	SERVA	ATIONS
								DATE	TIME	WATER AT		NG AT	STABILIZATION TIME
CASING	G :	2" insid	le diameter w	ith 5' sleeve				2/16/23	NR	NR	N	IA	NA
							•						
CASING		2"			OTHER:								
DEPTH	CASING	NI-		MPLE	DI OMO/CII	PID		SAMPL	E DESC	RIPTION		NOTES	STRATUM DESCRIPTION
(feet)	(blows/ft)	No.	REC/PEN (in)	DEPTH (ft.)	BLOWS/6"	(ppm)	0" - 12	" Dark brown F	SAND wi	th some silt, trac	e		
Ŭ	Ĭ,							cs; moist		,			TOPSOIL
2		ļ											
		S-1	19/72	0-6	NA	0.0	12" - 7	'2" Dark brown to	hlack F	-C SAND with e	oma cilt	(1)	
4 12" - 72" Dark brown to black F-C SAND with some silt, some gravel, some ash, trace debris (wood); moist													FILL
some gravel, some ash, trace debris (wood); moist													
4 — Some graver, some ash, race deshis (weed), most													
6	_												
								End	of Borin	g at 6'			
8	+	1											
10													
.0													
12	+	1											
14													
16		1											
	+												
	GRANU			COHESI		NOTE			(O. 1) =	2 000 (2 ::		00// =:	
	NS/FT)-4		LOOSE	BLOWS/FT 0-2	V. SOFT								collected across B-
	- -4 -10		OOSE.	0-2 2-4	SOFT								tos, and dioxins. P 14 metals, and
	-30		DENSE	4-8	M. STIFF		asbe		io oolie	o.ou at (4-0)	ioi i Al	i io, ivio	i it inclais, and
	-50		ENSE	8-15	STIFF								
	50	V.	DENSE	15-30	V. STIFF								
				> 30	HARD								
GENERA	L NOTES:	i) THE S	TRATIFICATION	LINES REPRES	SENT THE APP	ROXIMA	ATE BO	UNDARY BETWEE	N SOIL T	YPES. TRANSITI	ONS MAY	BE GRAI	DUAL.
								S AT TIMES AND I					
		FLUC	TUATIONS IN TI	HE LEVEL OF G	GROUNDWATE	R MAY	OCCUR	DUE TO OTHER I	FACTORS	THAN THOSE P	RESENT A	AT THE TI	ME

MEASUREMENTS ARE MADE.

BORING No.

B-203-2

							PRO	<u>JECT</u>		BORING No			B-204-1
1	Wes	ton	(&) Sc	ampsa	on		Claxto	on Field		SHEET			OF <u>1</u>
						1	Needh	am, MA		Project No. CHKD BY		EN	NG23-0164 ACE
BORIN	G Co.		Bro	onson Drillin	a		BOR	NG LOCATION			See	attache	
FOREN	/AN	NA 441	D	an Bronson			GRO	UND SURFA	CE ELE		N	IR	DATUM NR
WSE R			w McGuire,	Laura McG	overn		DATE	START			DATE		2/16/23
SAMPL	.ER:	Geopro	be					DATE	TIME	ROUNDWAT WATER AT		NG AT	STABILIZATION TIME
CASIN	G:	2" insid	e diameter w	rith 5' sleeve				2/16/23	NR	NR	N	IA	NA
CASING	SIZE:	2"			OTHER:								
DEPTH	CASING			AMPLE	1	PID		SAMPL	E DESC	RIPTION		NOTES	STRATUM DESCRIPTION
(feet)	(blows/ft) NA	No.	REC/PEN (in)	DEPTH (ft.)	BLOWS/6"	(ppm)	0"-12"	Light to dark bro	wn F-M	SAND with some	e silt,		TORSON
							trace o	organics; moist					TOPSOIL
2-								" Light brown F-0 ce roots; moist	SAND	with some grave	ei, trace		
2							28"-40	" Light brown to	gray C S	AND with trace	gravel;		
		S-1	26/72	0-6	NA	0.0	moist					(1)	FILL
4 —								" Orange to blac ash, trace debris			gravel,		1122
								" Dark gray to bla			e	1	
•								some debris (gl					
6-								End	of Borin	g at 6'			
8-													
10 –													
12-													
14 —													
16													
16-													
	♦ GRANU	AR SC	OII S	COHESIV	/E SOILS	NOTI	-S·						
	WS/FT	D	ENSITY	BLOWS/FT	DENSITY		1. Sa) collected across B-
)-4 -10		LOOSE OOSE	0-2 2-4	V. SOFT SOFT		204-1	and B-204-2	for PA	Hs, MCP 14	metals	, asbes	tos, and dioxins.
10)-30	M.	DENSE	4-8	M. STIFF								
)-50 50		ENSE DENSE	8-15 15-30	STIFF V. STIFF								
				> 30	HARD								
GENERA	L NOTES:							JNDARY BETWEE S AT TIMES AND L					
		FLUC	TUATIONS IN T	HE LEVEL OF G				DUE TO OTHER F					
		MEAS	SUREMENTS AF	KE MADE.						j	BORIN	NG No.	B-204-1

			_				PRC	<u>JECT</u>		BORING No			B-2 <u>04-2</u>
1	11/00	ton	(&) Sc	mne	n m		Claxto	on Field		SHEET		1	OF 1
	VVCC		0,00	arripod				am, MA		Project No.		ΕN	IG23-0164
										CHKD BY			ACE
BORIN	G Co.		Bro	nson Drillin	g		BOR	ING LOCATION	ON		See	attache	ed plan
FOREN				an Bronson				UND SURFA					DATUM NR
WSE R	EP.	Matthe	w McGuire,	Laura McG	iovern		DATE	START	2	2/16/23	DATE	END	2/16/23
SAMPL	.ER:	Geopro	be							ROUNDWAT			
CASIN	C .	O" in aid	e diameter w	ith El alassa				DATE 2/16/23	TIME NR	WATER AT NR		NG AT	STABILIZATION TIME NA
CASIN	G.	Z IIISIU	e diameter w	illi 5 Sieeve			,	2/10/23	INIX	INIX	IN	A	IVA
CASING	SIZE:	2"			OTHER:								
DEPTH	CASING		SA	AMPLE		PID		SAMDI	E DESC	RIPTION		NOTES	STRATUM DESCRIPTION
(feet)	(blows/ft)	No.	REC/PEN (in)	DEPTH (ft.)	BLOWS/6"	(ppm)						NOTEO	OTTATOM DESCRIPTION
0	NA 							Light to dark bro organics; moist	wn F-M	SAND with som	e silt,		TOPSOIL
							11400	ngamoo, moloc					
2-							12"-36	" Light to dark bi	own F-C	SAND with son	ne		
_							gravel	moist					
		S-1	31/72	0-6	NA	0.0	36"-42	" Light brown C	SAND w	vith trace gravel		(1)	
4													FILL
4-								" Dark brown to		C SAND, some	gravel,		
							some (glass, trace brick	t; moist				
							66"-72	" White ASH, tra	ce glass	: moist			
6-									of Borin				
8-		l											
10-		l											
12-													
14 –													
14													
40													
16-													
	↓												
	GRANU	LAR SC	OILS	COHESIN	/E SOILS	NOTI	S:						
	WS/FT		ENSITY	BLOWS/FT	DENSITY) collected across B-
)-4 -10		LOOSE OOSE	0-2 2-4	V. SOFT SOFT		204-1	l and B-204-2	for PA	Ms, MCP 14	metals	, asbes	tos, and dioxins.
)-30		DENSE	4-8	M. STIFF								
)-50	D	ENSE	8-15	STIFF								
>	50	V.	DENSE	15-30	V. STIFF								
GENEDA	I NOTES.	i) THE 6	TRATICICATION	> 30	HARD	ROVINA.	TE PO	JNDARY BETWEE	א פרטוו ד	VDEQ TOANIGITI	ONS MAN	/ RE CDA	NIAI
OLINERA	√ IAO I E9:							JNDARY BETWEE S AT TIMES AND U					
		,						DUE TO OTHER F					
		MEAS	SUREMENTS AR	E MADE.						İ	B 0 = :-	10.1:	D 004 0
											BORIN	No. کا	B-204-2

							PRC	<u>JECT</u>		BORING No			B-205-1
1	1/00	ton	(&) Sc	mno	SM		014	F:-14		SHEET		1	OF 1
	wes	IOI	(0)50	ampso	ווכ			on Field am, MA		Project No.			IG23-0164
						·	tooui	MITH, 1717		CHKD BY			ACE
BORIN	G Co.		Bro	nson Drillin	q		BOR	ING LOCATIO	ON		See	attache	ed plan
FOREN			D:	an Bronson			GRO	UND SURFA	CE ELE		N	R	DATUM NR
WSE R	EP.	Matthe	ew McGuire,	Laura McG	overn		DATE	E START	2	2/16/23	DATE	END .	2/16/23
SAMPL	ER:	Geopro	be						G	ROUNDWAT	ER OB	SERVA	TIONS
O A O I N I	.	011 : 11	P 1	51 1				DATE	TIME	WATER AT		NG AT	STABILIZATION TIME
CASIN	J .	2" Insid	e diameter w	ith 5' sieeve				2/16/23	NR	NR	N	А	NA NA
CASING	SIZE:	2"			OTHER:								
DEPTH	CASING		SA	AMPLE		PID		CAMDI		DIDTION		NOTES	CTDATUM DECODIDATION
(feet)	(blows/ft)	No.	REC/PEN (in)	DEPTH (ft.)	BLOWS/6"	(ppm)				RIPTION		NOTES	STRATUM DESCRIPTION
0	NA 							Dark brown F-M cs; moist	SAND v	vith some silt, tra	ace		TOPSOIL
						NR	_	" Tan to light bro	wn F-M	SAND with some	e silt.		
2-								gravel, trace brick			ŕ		
							27"-55	" Gray to black F	-C SANI	D with some ash	ı, little		
		S-1	41/72	0-6	NA			race glass; mois			,	(1)	
4							55"-61	" Light gray F-C	SAND w	ith some white a	sh, little		FILL
4-							gravel	moist					
						0.0		" Dark orange F- brick, trace glass		with some grav	el,		
								" Light gray to bla		SAND with some	e ash		
6-								gravel, trace glas			,		
								End o	of Borin	g at 6'			
8-	+												
10-	-												
12-		l											
14 –													
16-													
10													
	 												
	GRANU				/E SOILS	NOT		. 5.005	(O 4) F	2 225 (2 4)		05 (4.0)	
	NS/FT)-4		LOOSE	0-2	V. SOFT			•	. ,	. ,) collected across B- tos, and dioxins.
	-10		OOSE	2-4	SOFT		200	. and B 200 2	. 101 1 7		motaro	, acces	ioo, and dioxino.
	-30		DENSE	4-8	M. STIFF								
)-50 50		ENSE DENSE	8-15 15 20	STIFF V. STIFF								
_	50	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	DENSE	15-30 > 30	V. STIFF HARD								
GENERA	L NOTES:	i) THE S	TRATIFICATION			ROXIMA	ATE BO	JNDARY BETWEE	N SOIL T	YPES. TRANSITI	ONS MAY	BE GRAD	DUAL.
		,						S AT TIMES AND U					
			TUATIONS IN T SUREMENTS AR		ROUNDWATE	R MAY	OCCUR	DUE TO OTHER F	ACTORS	THAN THOSE PF	RESENT A	AT THE TIM	ME
		IVILAC	JOINEMENTO AN	IVII \DL.							BORIN	IG No.	B-205-1

							PRC	JECT		BORING No			B-205-2
,	Wes	ton	(&) Sc	ampsa	on		Claxto	on Field		SHEET			OF <u>1</u>
						1	Needh	am, MA		Project No. CHKD BY		EN	NG23-0164 ACE
BORIN	G Co.		Bro	onson Drillin	a		BOR	NG LOCATION			See	attache	
FORE	ΛΑN		D	an Bronson			GRO	UND SURFA	CE ELE		N	IR	DATUM NR
WSE R			w McGuire,	Laura McG	iovern		DATE	START			DATE		2/16/23
SAMPL	.ER:	Geopro	be				•	DATE	TIME	ROUNDWAT WATER AT		NG AT	ATIONS STABILIZATION TIME
CASIN	G:	2" insid	e diameter w	ith 5' sleeve				2/16/23	NR	NR		IA	NA
CASING	SIZE:	2"			OTHER:								
DEPTH				AMPLE		PID		SAMPL	E DESC	RIPTION		NOTES	STRATUM DESCRIPTION
(feet)	(blows/ft) NA	No.	REC/PEN (in)	DEPTH (ft.)	BLOWS/6"	(ppm)	0"-12"	Dark brown F-M	SAND w	vith some silt, tra	ace		
								cs; moist					TOPSOIL
0							12"-34	" Light brown to	light gray	y F-C SAND, sor	me ash,		
2-							trace r	oots, trace debri	s (glass,	brick); moist			
		S-1	38/72	0-6	NA	0.0	34"-44	" Light gray to bl	ack F-C	SAND with some	e	(1)	FILL
4 —							gravel	some ash; mois					FILL
									1 0	CAND with a con-	_		
								" Light gray to bl some ash, trace					
6-								End	of Borin	g at 6'			
8-													
0_													
10-													
12-													
14 —													
16-													
	↓												
	GRANU				/E SOILS	NOT			(O. 4) F	2 2 2 5 (2 4)		.05 (4.0	.
	WS/FT)-4		ENSITY LOOSE	BLOWS/FT 0-2	V. SOFT) collected across B- tos, and dioxins.
	-10		OOSE	2-4	SOFT								
)-30)-50		DENSE ENSE	4-8 8-15	M. STIFF STIFF								
>	50	V.	DENSE	15-30	V. STIFF								
GENERA	L NOTES:	i) THE S	TRATIFICATION	> 30 LINES REPRES	HARD SENT THE APP	ROXIMA	ATE BOI	JNDARY BETWEE	N SOIL T	YPES. TRANSITI	ONS MAY	/ BE GRAI	DUAL.
		ii) WATE	R LEVEL READ	INGS HAVE BEE	EN MADE IN TH	IE DRIL	L HOLES	S AT TIMES AND U	JNDER C	ONDITIONS STAT	ED ON T	HIS BORII	NG LOG.
			TUATIONS IN T SUREMENTS AR		BKUUNDWA [E	K MAY (JUCUR	DUE TO OTHER F	-AUTURS	THAN THOSE PE	KESENI /	ALIHE []	VIE
											BORIN	IG No.	B-205-2

						DR(JECT_		DODING No			B-206-1
				SM		1110	<u>OLOT</u>		BORING No			
Wes	iton(&)Sc	ampso	on			n Field		SHEET			OF1
					Г	Needh	am, MA		Project No. CHKD BY		Er	NG23-0164
BORING Co.		Bro	nson Drillin	a		R∩RI	NG LOCATION			Saa	attache	ed nlan
FOREMAN			an Bronson				UND SURFA		EV.			DATUM NR
WSE REP.	Matthey	w McGuire,	Laura McG	overn		DATE	START	2	2/16/23	DATE	END	2/16/23
SAMPLER:	Geoprob	е						G	ROUNDWAT	ER OE	SERVA	ATIONS
0.101110							DATE	TIME	WATER AT		NG AT	STABILIZATION TIME
CASING:	2" inside	diameter wi	th 5' sleeve				2/16/23	NR	NR	N	IA	NA
CASING SIZE:	2"			OTHER:								
DEPTH CASING			AMPLE		PID		SAMPI	F DESC	RIPTION		NOTES	STRATUM DESCRIPTION
(feet) (blows/ft) 0 NA	No. I	REC/PEN (in)	DEPTH (ft.)	BLOWS/6"	(ppm)	0" 44"				- 114		0.1.0.1.0.1.0.1
0 NA 							Lignt to dark bro rganics; moist	wn F-IVI S	SAND with some	SIIT,		TOPSOIL
							•	SAND	with some silt, tra	ace		
2	-					gravel;		C SAND	, some ash, trac	e hrick:		
-	S-1	29/60	0-5	NA	0.0	moist	Dark Grange 1	OOAND	, some asn, hac	C DITOR,	(2)	
		20/00		1471	0.0	30"-36	" Light brown F-N	л SAND,	some silt, some	gravel	(2)	FILL
4	1					36"-60 gravel;	0 0 , 0	ht brown	F-C SAND with	some		
						gravei,	moist					
							End of Bo	ring at	5' (Refusal)		(1)	
6	4											
8	1											
10	1											
12	4											
14	4											
16	-											
GRANU	LAR SO	II S	COHESIV	/E SOILS	NOTE	S·						
BLOWS/FT		NSITY	BLOWS/FT	DENSITY			fusal at 5' (su	spect b	oedrock).			
0-4 4-10		OOSE OOSE	0-2 2-4	V. SOFT		2 50	mples P 206	(0 1) E	206 (2.4) a	nd P 2	06 (4 6)) collected corose P
10-30		DENSE	4-8	SOFT M. STIFF					5-206 (2-4), a Ms, MCP 14) collected across B- sbestos.
30-50	DE	ENSE	8-15	STIFF					,			
> 50	V. E	DENSE	15-30 > 30	V. STIFF HARD								
GENERAL NOTES:	i) THE STF	RATIFICATION I			COXIMAT	E BOUN	IDARY BETWEEN	SOIL TYF	PES. TRANSITION	S MAY BE	E GRADUA	AL.
	,								NDITIONS STATE			
				ROUNDWATER	MAY O	CCUR D	UE TO OTHER FA	CTORS T	HAN THOSE PRE	SENT AT	THE TIME	
	WEASU	JREMENTS ARI	E IVIAUE.						[BORIN	IG No.	B-206-1

							PRO)JECT		BORING No			B-206-2
,	11		0		SM					•			
	Wes	ton	(&) Sc	ampso	on			on Field		SHEET			OF <u>1</u> IG23-0164
						'	veear	nam, MA		Project No. CHKD BY			ACE
BORIN	G Co		Bro	nson Drillin	ıa		BOR	ING LOCATION	NC		See	attache	ed plan
FOREN				an Bronson				UND SURFA		ΞV.			DATUM NR
WSE R	EP.	Matthe	w McGuire,	Laura McG	Govern		DATI	E START	2	2/16/23	DATE	END	2/16/23
SAMPL	ER:	Geopro	be						G	ROUNDWAT	ER OE	BSERVA	ATIONS
	_						•1	DATE	TIME	WATER AT		NG AT	STABILIZATION TIME
CASIN	G :	2" insid	le diameter w	ith 5' sleeve			•	2/16/23	NR	NR	N	IA	NA
CASING	SIZE:	2"			OTHER:		•1						
DEPTH	CASING		SA	AMPLE		PID		CAMDI		DIDTION		NOTES	CTDATI IM DECODIDITION
(feet)	(blows/ft)	No.	REC/PEN (in)	DEPTH (ft.)	BLOWS/6"	(ppm)				RIPTION		NOTES	STRATUM DESCRIPTION
0	NA 							Light to dark bro organics; moist	wn F-M	SAND with some	e silt,		TOPSOIL
								" Light gray to bl	ack F-C	SAND. some as	h.		
2-								gravel, trace deb					
_		S-1	26/60	0-5	NA	0.0	26"-45	" Black to brown	F-C SAI	ND with some si	lt, little	(2)	
							gravel	; moist					FILL
4 —													
4-							45"-60	" Light gray F-C	SAND w	ith some gravel;	moist		
								End of Bo	ring at	5' (Refusal)		(1)	
6								2.10 01 20	ing at t	(Itoladal)		(1)	
6-		1											
8-		1											
10 –													
12 –		1											
14 –		ł											
16-													
	▼ GRANU	AR SC)II S	COHESI	/F SOILS	NOTI	-S·						
BLO	WS/FT		ENSITY	BLOWS/FT	DENSITY			fusal at 5' (su	spect l	bedrock).			
)-4		LOOSE	0-2	V. SOFT				· ·				
	-10)-30		OOSE DENSE	2-4 4-8	SOFT M. STIFF			mples B-206 I and B-206-2) collected across B-
)-50)-50		ENSE	8-15	STIFF		_00-	. 3.13 D 200-2		, 14	otaic	.,	
>	50	V.	DENSE	15-30	V. STIFF								
CENED A	I NOTES:	i) TUE 0	TDATICIOATION	> 30	HARD		ATE DO	UNDARY BETWEE	N COU	VDES TRANSITI	ONIC MAN	V DE ODAS	DUAL
OLINERA	L NOTES:							UNDARY BETWEE S AT TIMES AND I					
								DUE TO OTHER I					
		MEAG	STIDEMENTS AD	EMADE									

BORING No.

B-206-2

							PRC	<u>JECT</u>		BORING No			PER-1
1	1/00	ton	(&) Sc	mner	SM		Clayte	on Field		SHEET		1	OF 1
	vves	IOII	(0)00	al lipse	ווכ			iam, MA		Project No.			IG23-0164
								,		CHKD BY			ACE
BORING	G Co.		Bro	nson Drillin	g		BOR	ING LOCATIO	ON		See	attache	ed plan
FOREM	IAN		D	an Bronson				UND SURFA	CE ELI				DATUM NR
WSE RI	EP.	Matthe	w McGuire,	Laura McG	overn		DATE	START	2	2/16/23	DATE	END	2/16/23
SAMPLI	ER:	Geopro	be						G	ROUNDWAT	ER OF	SERVA	ATIONS
	_							DATE	TIME	WATER AT		NG AT	STABILIZATION TIME
CASING	∋ :	2" insid	e diameter w	ith 5' sleeve				2/16/23	NR	NR	N	IA	NA
CASING	SIZF.	2"			OTHER:								
	CASING		SA	AMPLE		PID							
	(blows/ft)	No.	REC/PEN (in)		BLOWS/6"	(ppm)		SAMPL	E DESC	RIPTION		NOTES	STRATUM DESCRIPTION
0	ŅA							Dark brown F SA	AND with	n some silt, trace)		TOPSOIL
							organi	cs; moist					TOTOOLE
2		ł											
		S-1	37/72	0-6	NA	ND		" Dark brown to l , trace debris (bri					
		3-1	31/12	0-0	INA	INIX	gravei moist	, trace debris (bri	ck, glass	s, metal, ash), tr	ace siit;		FILL
4		ļ											1166
							68"-72	" Dark brown F-0	C SAND	with some ash	trace		
6								race debris (glas					
6								End	of Borin	g at 6'			
8	+	ł											
10													
40													
12		1											
14	+	ł											
16		ļ											
.													
	\downarrow												
	GRANU	LAR SC	DILS	COHESIV	E SOILS	NOT	S:						
	VS/FT		ENSITY	BLOWS/FT	DENSITY								
	-4 10		LOOSE OOSE	0-2 2-4	V. SOFT SOFT								
	-30		DENSE	4-8	M. STIFF								
	-50		ENSE	8-15	STIFF								
>	50	V.	DENSE	15-30	V. STIFF								
				> 30	HARD								
GENERAI	L NOTES:	•						JNDARY BETWEE					
		,						S AT TIMES AND U DUE TO OTHER F					
			SUREMENTS AR		NOUNDWAIE	I CIVIM T	JOOUR	DOL TO OTHER P	AUTURS	, IIIAN INUSE PI	VEOEIN I	⊼i iΠ ⊆ III	vi
											BORIN	IG No.	PER-1

							PRC	<u>JECT</u>		BORING No			PER-2
,	11/00	ton	(&) Sc	amped	SM		Clayte	on Field		SHEET		1	OF 1
	Wes	IOII	(0)	arripsc	ווכ			iam, MA		Project No.			IG23-0164
								,		CHKD BY			ACE
BORIN	G Co.		Bro	onson Drillin	a		BOR	ING LOCATION	ON		See	attache	ed plan
FORE				an Bronson	_			UND SURFA		EV.			DATUM NR
WSE R	EP.	Matthe	ew McGuire,	Laura McG	overn		DATE	START	2	2/16/23	DATE	END	2/16/23
SAMPL	ER:	Geopro	be						G	ROUNDWAT	ER OF	BSERVA	ATIONS
								DATE	TIME	WATER AT		NG AT	STABILIZATION TIME
CASIN	G:	2" insid	le diameter w	rith 5' sleeve				2/16/23	NR	NR	N	IA	NA
CASING	2 SI7E:	2"			OTHER:								
DEPTH			C.	AMPLE	OTTILITY.	PID							
(feet)	(blows/ft)	No.	REC/PEN (in)		BLOWS/6"	(ppm)		SAMPL	E DESC	RIPTION		NOTES	STRATUM DESCRIPTION
0	ŅA		,			(11 /	0"-12"	Light to dark bro	wn F SA	ND with some s	ilt, trace		TOPSOIL
							roots;						TOFSOIL
							12"-26 roots;	" Tan to light bro	wn F SA	ND with some s	ilt, trace		
2-		ł					10013,	illoist					
		S-1	20/70	0.6	NIA	ND		" Light brown to trace debris (as			пе		
		5-1	30/72	0-6	NA	INK	graver	, trace debris (as	ii, giass,	brick), moist			FILL
4 —		ļ						" Dark orange F-		with trace grave	el, trace		1122
							aebris	(ash, glass); mo	ist				
								" Brown F-C SAN	ND with s	some silt, trace (gravel,		
6_	trace roots; moist												
O								End	of Borin	g at 6'			
•													
8-		1											
10 —		ł											
12-													
14 —													
16													
16-		1											
	↓												
	GRANU	LAR SC	DILS	COHESIV	E SOILS	NOT	S:						
	WS/FT		ENSITY	BLOWS/FT	DENSITY								
)-4 -10		LOOSE .OOSE	0-2 2-4	V. SOFT SOFT								
	-10)-30		DENSE	4-8	M. STIFF								
)-50		ENSE	8-15	STIFF								
>	50	V.	DENSE	15-30	V. STIFF								
		<u> </u>		> 30	HARD								
GENERA	L NOTES:							JNDARY BETWEE					
		,						S AT TIMES AND U DUE TO OTHER F					
			SUREMENTS AR						5	55211			
											BORIN	NG No.	PER-2

							PRC)JECT		BORING No			PER-3	
	1/00	ton	(5)	ampso	SM		Clayte	on Field		SHEET		1 OF 1		
	WES	IOI	(0)	Jimpsc	ווכ			nam, MA		Project No.			IG23-0164	
										CHKD BY			ACE	
BORIN	G Co.		Bro	onson Drillin	g		BOR	ING LOCATION	ON		See	attache	ed plan	
FORE			D	an Bronson				UND SURFA					DATUM NR	
WSE R	EP.	Matthe	ew McGuire	, Laura McG	overn		DATE	START	2	2/16/23	DATE	END	2/16/23	
SAMPL	ER:	Geopro	be						G	ROUNDWAT			ATIONS	
CACINI	¬.	O" in aid	la diamantanu	ith El alassa				DATE 2/16/23	TIME NR	WATER AT NR		NG AT	STABILIZATION TIME NA	
CASIN	J.	Z INSIO	le diameter w	ilii 5 sieeve				2/10/23	INIX	INIX	IN	IA	IVA	
CASING	SIZE:	2"			OTHER:									
DEPTH	CASING		S	AMPLE		PID		SAMDI	E DESC	RIPTION		NOTES	STRATUM DESCRIPTION	
(feet)	(blows/ft)	No.	REC/PEN (in)	DEPTH (ft.)	BLOWS/6"	(ppm)							STRATOW DESCRIPTION	
0	NA 						0"-14" roots;	Light to dark bro	wn F SA	ND with some s	silt, trace		TOPSOIL	
2-							14"-26	" Tan F-M SAND) with litti	e siit; moist				
-														
		S-1	36/72	0-6	NA	NR								
4 –								" Dark brown to gravel, some ash					FILL	
4								urnt wood; moist	,	debiis (glass, pe	арег),			
•														
6-								End	of Borin	g at 6'				
8-														
10 –	_	ł												
12-		ļ												
14 —														
16-														
. •														
	GRANU				/E SOILS	NOT	ES:							
	NS/FT)-4		LOOSE	BLOWS/FT 0-2	V. SOFT									
	-10		.OOSE	2-4	SOFT									
	-30		DENSE	4-8	M. STIFF									
	-50 50		DENSE DENSE	8-15 15-30	STIFF V. STIFF									
	JU	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	DENOE	> 30	V. STIFF HARD									
GENERA	L NOTES:	i) THE S	TRATIFICATION			ROXIMA	ATE BO	UNDARY BETWEE	N SOIL T	YPES. TRANSIT	IONS MA	Y BE GRAD	DUAL.	
		,						S AT TIMES AND U						
			CTUATIONS IN T SUREMENTS AF		ROUNDWATE	R MAY	CCUR	DUE TO OTHER F	-ACTORS	THAN THOSE P	RESENT A	AT THE TII	ME	
		.,,									BORIN	NG No.	PER-3	

						<u>PROJECT</u>			BORING No PE			PER-4	
1	1/00	ton	(&) Sc	mner	SM		Clayto	on Field		SHEET		1	OF 1
	VVCS		0	arripod				am, MA		Project No.		EN	IG23-0164
										CHKD BY			ACE
BORIN	G Co.		Bro	nson Drillin	g		BOR	ING LOCATIO	ON		See	attache	ed plan
FORE				an Bronson				UND SURFA		-			DATUM NR
WSE R	EP.	Matthe	ew McGuire,	Laura McG	overn		DATE	START	2	2/16/23	DATE	END	2/16/23
SAMPL	ER:	Geopro	be						G	ROUNDWAT	ER OF	SERV/	
0 A O.N.	_	011 11		e				DATE	TIME	WATER AT		NG AT	STABILIZATION TIME
CASIN	:ف	2" insid	le diameter w	ith 5' sleeve				2/16/23	NR	NR	N	IA	NA
CASING	SIZE:	2"			OTHER:								
DEPTH	CASING		SA	AMPLE		PID		0444701		DIDTION			077.47.44.75.007.77.04.
(feet)	(blows/ft)	No.	REC/PEN (in)	DEPTH (ft.)	BLOWS/6"	(ppm)		SAMPL	E DESC	RIPTION		NOTES	STRATUM DESCRIPTION
0	ŅΑ						0"-20"	Light to dark bro	wn F SA	ND with some s	ilt. trace		
							roots;				,		TOPSOIL
2-		1				20"-36" Light brown to gray F-C SAND, some gravel, trace silt; moist					ravel,		
		S-1	22/72	0-6	NA	NR	11400	int, moist					
													FILL
4 –		ł					36"-72	" Dark brown to	black F-0	C SAND with sor	me		FILL
								some ash, trace			110		
6-													
								Ena	of Borin	g at 6°			
8-													
0-													
10 –		1											
12-	+	ł											
14 –		l											
16-		ļ											
	\downarrow												
	GRANU			COHESI		NOTE	ES:						
	NS/FT)-4		LOOSE	BLOWS/FT 0-2	V. SOFT	ļ							
	- -10		.00SE	2-4	SOFT								
	-30		DENSE	4-8	M. STIFF								
30	-50		ENSE	8-15	STIFF								
>	50	V.	DENSE	15-30	V. STIFF								
				> 30	HARD								
GENERA	L NOTES:	•						JNDARY BETWEE					
		,						S AT TIMES AND U DUE TO OTHER F					
			SUREMENTS AR										
											BORIN	IG No.	PER-4

						<u>PROJECT</u>			BORING No PER-5			PER-5	
,	11/00	ton	(&) Sc	amner	SM		Clayte	on Field		SHEET		1	OF 1
	VVCS		(0)00	an ipac	ווכ			iam, MA		Project No.			IG23-0164
								,		CHKD BY			ACE
BORIN	G Co.		Bro	onson Drillin	q		BOR	ING LOCATION	ON		See	attache	ed plan
FORE			D	an Bronson				UND SURFA	CE ELI		Ν	IR	DATUM NR
WSE R	REP.	Matthe	ew McGuire,	Laura McG	overn		DATE	START	2	2/16/23	DATE	END	2/16/23
SAMPL	ER:	Geopro	be						G	ROUNDWAT	ER OE	SERVA	ATIONS
								DATE	TIME	WATER AT		NG AT	STABILIZATION TIME
CASIN	G:	2" insid	le diameter w	ith 5' sleeve				2/16/23	NR	NR	N	IA	NA
CASINO	SIZE:	2"			OTHER:								
DEPTH		<u>-</u>	9.1	AMPLE	OTTILITY.	PID							
(feet)	(blows/ft)	No.	REC/PEN (in)		BLOWS/6"	(ppm)		SAMPL	E DESC	RIPTION		NOTES	STRATUM DESCRIPTION
0	ŅA		, ,	()		VI 1 7	0" 40"	liabtto douk buo	F C A	ND with some o	ilt tunna		
							roots;	Light to dark bro moist	WII F SA	and with some s	iit, trace		TOPSOIL
2-								" Light to dark br	own F-N	I SAND with son	ne silt,		
		0.4	07/70	0.0	N1.0		trace o	gravel; moist					
		S-1	27/72	0-6	NA	NR	36"-46	" Gray to light br	own C S	AND with some	gravel,		
4 —							trace s	silt; moist					FILL
							40" 70	" D	F O	CAND with a sur			
								" Dark brown to g some ash, som			ie		
•							5	,	,	5 ,			
6-								End	of Borin	g at 6'			
8-													
10-													
12 -													
14 —													
16-													
10													
	↓												
	GRANU	LAR SC	OILS	COHESIV	E SOILS	NOTE	S:						
	WS/FT		ENSITY	BLOWS/FT	DENSITY								
)-4		LOOSE	0-2	V. SOFT								
	-10)-30		OOSE DENSE	2-4 4-8	SOFT M. STIFF								
)-30)-50		DENSE DENSE	8-15	STIFF								
	50		DENSE	15-30	V. STIFF								
				> 30	HARD								
GENER/	AL NOTES:	i) THE S	TRATIFICATION	LINES REPRES	SENT THE APP	ROXIMA	ATE BO	JNDARY BETWEE	N SOIL T	YPES. TRANSITI	ONS MAY	BE GRAI	DUAL.
		,						S AT TIMES AND U					
					ROUNDWATE	R MAY	OCCUR	DUE TO OTHER F	ACTORS	THAN THOSE PF	RESENT	AT THE TII	ME
		MEAS	SUREMENTS AR	KE IVIADE.						ſ	BORIN	IG No	PER-5

							<u>PROJECT</u>			BORING NoPER-6			PER-6
1	1/00	ton	(&) Sc	mno	SM		014	F:-14		SHEET		1	OF 1
	wes	IOI	(0)50	ampso	ווכ			on Field am, MA		Project No.			IG23-0164
							10041	(CITI, 100 C		CHKD BY			ACE
BORING	G Co.		Bro	nson Drillin	q		BOR	ING LOCATION	ON		See	attache	d plan
FOREM			D:	an Bronson				UND SURFA	CE ELE		N	IR	DATUM NR
WSE R	ΞP.	Matthe	ew McGuire,	Laura McG	overn		DATE	START	2	2/16/23	DATE	END .	2/16/23
SAMPLI	ER:	Geopro	be						G	ROUNDWAT	ER OF	SERVA	TIONS
O A CINIC	١.	011 : : :		51 1				DATE	TIME	WATER AT		NG AT	STABILIZATION TIME
CASING	j:	2" insid	le diameter w	ith 5' sleeve				2/16/23	NR	NR	IN.	IA	NA
CASING	SIZE:	2"			OTHER:								
DEPTH	CASING		SA	AMPLE		PID		0444791		DIDTION			077.47.44.55.00.457.04
(feet)	(blows/ft)	No.	REC/PEN (in)		BLOWS/6"	(ppm)		SAMPL	E DESC	RIPTION		NOTES	STRATUM DESCRIPTION
0	NA						0"-12"	Light to dark bro	wn F SA	AND with some s	ilt. trace		T0000U
							roots;				,		TOPSOIL
2		1											
		S-1	33/72	0-6	NA	NR							
								2" Light brown to le debris (ash ce					FILL
4								arting at approxir			, 0 01		1166
6	-							Fnd (of Borin	n at 6'			
								Liiu	or Borni	y at v			
8		ļ											
10													
ΤОТ													
12		i											
14													
16		ł											
	\												
BLOV	GRANU		DILS	BLOWS/FT	/E SOILS DENSITY	NOTE	ES:						
0-			LOOSE	0-2	V. SOFT								
4-	10	L	OOSE	2-4	SOFT								
	-30		DENSE	4-8	M. STIFF								
	-50 50		DENSE DENSE	8-15 15-30	STIFF V. STIFF								
	00	v.	PLINOL	> 30	V. STIFF HARD								
GENERAL	NOTES:	i) THE S	TRATIFICATION			ROXIMA	ATE BO	JNDARY BETWEE	N SOIL T	YPES. TRANSITI	ONS MAY	/ BE GRAD	OUAL.
		,						S AT TIMES AND U					
					GROUNDWATE	R MAY	OCCUR	DUE TO OTHER F	ACTORS	S THAN THOSE PE	RESENT	AT THE TIN	MΕ
		IVIEAS	SUREMENTS AR	L IVIADE.						ļ	BORIN	NG No.	PER-5

						<u>PROJECT</u>			BORING NoPER-7			PER-7		
	11/00	ton	(5)	ampso	SM		Cloyd	on Field		SHEET		1	OF 1	
	WES		(0)	Jillipso	ווכ			nam, MA		Project No.			IG23-0164	
								,		CHKD BY			ACE	
BORIN	G Co.		Bro	onson Drillin	a	•	BOR	ING LOCATION	ON		See	attache	ed plan	
FORE				an Bronson	_			UND SURFA			Ν	IR	DATUM NR	
WSE F	REP.	Matthe	ew McGuire,	Laura McG	overn		DATI	E START	2	2/16/23	DATE	END	2/16/23	
SAMPL	ER:	Geopro	be						G	ROUNDWAT	ER OF	BSERVA	ATIONS	
								DATE	TIME	WATER AT	CASI	NG AT	STABILIZATION TIME	
CASIN	G:	2" insid	le diameter w	ith 5' sleeve				2/16/23	NR	NR	N	IA	NA	
CASINIC	3 SIZE:	2"			OTHER:		•							
DEPTH		_		AMPLE	OTTIER.	PID	·							
(feet)	(blows/ft)			DEPTH (ft.)	BLOWS/6"	(ppm)		SAMPL	E DESC	RIPTION		NOTES	STRATUM DESCRIPTION	
0	ŅA			\ /		(11 /	0"-12"	Light to dark bro	wn F SA	ND with some s	ilt, trace		TOPSOIL	
		S-1	13/24	0-2	NA	NR roots; moist 12"-24" Tan F-M SAND, some rock, little silt; fractured						TOFSOIL		
								l" Tan F-M SAND tarting at 20"), some r	ock, little silt; fra	ctured		FILL	
2-		-				End of Boring at 2' (Refusal)								
									•	, ,				
4 —		-												
6-														
8-														
0-														
10 –		1												
12-		1												
14 –		4												
16-		4												
. •														
	↓													
	GRANU	_		COHESIV		NOTI	ES:							
	WS/FT)-4		LOOSE	BLOWS/FT 0-2	V. SOFT									
	-10		OOSE	2-4	SOFT									
10	0-30	M.	DENSE	4-8	M. STIFF									
	0-50		ENSE	8-15	STIFF									
>	50	V.	DENSE	15-30 > 30	V. STIFF HARD									
GENFR4	AL NOTES	i) THF S	TRATIFICATION			ROXIM	ATE BO	UNDARY BETWEE	EN SOIL T	YPES, TRANSITI	ONS MAY	Y BE GRAF	DUAL.	
>=: 1=: V		,						S AT TIMES AND I						
		FLUC	CTUATIONS IN T	HE LEVEL OF G	ROUNDWATE	R MAY	OCCUR	DUE TO OTHER F	ACTORS	THAN THOSE PF	RESENT	AT THE TI	ME	
		MEAS	SUREMENTS AF	RE MADE.						ľ	B 0 = 0	10.1:	DED C	
											BORIN	NG No.	PER-5	

					<u>PROJECT</u>			BORING No			PER-8			
,	1/00	ton	(&) Sc	mno	SM		014	F:-14		SHEET		1 OF 1		
	wes	IOI	(0)50	ampso	ווכ			on Field am, MA		Project No.			IG23-0164	
								,		CHKD BY			ACE	
BORIN	G Co.		Bro	nson Drillin	g		BOR	ING LOCATION	ON		See	attache	d plan	
FOREN			D:	an Bronson			GRO	UND SURFA	CE ELE		N	IR	DATUM NR	
WSE R	EP.	Matthe	ew McGuire,	Laura McG	overn		DATE	START	2	2/16/23	DATE	END _	2/16/23	
SAMPL	.ER:	Geopro	be						G	ROUNDWAT	ER OE	SERVA	TIONS	
O A O I N I	0	011 11		= 1				DATE	TIME	WATER AT		NG AT	STABILIZATION TIME	
CASIN	:	2" insid	le diameter w	ith 5' sleeve				2/16/23	NR	NR	N	IA	NA	
CASING	SIZE:	2"			OTHER:									
DEPTH	CASING		SA	AMPLE		PID		CAMDI		DIDTION		NOTES	CTDATUM DECODIDATION	
(feet)	(blows/ft)	No.	REC/PEN (in)	DEPTH (ft.)	BLOWS/6"	(ppm)				RIPTION		NOTES	STRATUM DESCRIPTION	
0	NA 						0"-12" Light to dark brown F SAND with some silt, trace roots; moist						TOPSOIL	
							10013,	IIIOISt						
2-														
		S-1	21/72	0-6	NA	NR	40" 70	" Black F-M SAN	ID 1:#1= -	aumamiaa littla si	14 1:441.0			
								ttle debris (glass			it, iittie		FILL	
4 –														
6-								End	of Borin	g at 6'				
8-														
10-														
12-														
12														
4.4														
14 –														
16 –														
	GRANU	LAR SO	OILS	COHESIV	/E SOILS	NOTE	S:							
	WS/FT	D	ENSITY	BLOWS/FT										
)-4 10		LOOSE	0-2	V. SOFT									
	-10)-30		OOSE DENSE	2-4 4-8	SOFT M. STIFF									
)-50		DENSE	8-15	STIFF									
>	50	V.	DENSE	15-30	V. STIFF									
OENED:	LNOTES	:/ -:	TDATIES	> 30	HARD	DCV	TE 5 7	IND ADVIDED	N 60" =	VDE0 TD::::	ONO	/ DE 02:-	NIAI	
GENERA	L NOTES:	,						JNDARY BETWEE S AT TIMES AND U						
		,						DUE TO OTHER F						
		MEAS	SUREMENTS AR	E MADE.						ı				
											BORIN	IG No.	PER-5	

Laboratory Analytical Reports

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Lee Koska Weston and Sampson Engineers, Inc. 5 Centennial Drive Peabody, MA 01960

RE: Claxton Field (N/A)

ESS Laboratory Work Order Number: 23B0634

This signed Certificate of Analysis is our approved release of your analytical results. These results are only representative of sample aliquots received at the laboratory. ESS Laboratory expects its clients to follow all regulatory sampling guidelines. Beginning with this page, the entire report has been paginated. This report should not be copied except in full without the approval of the laboratory. Samples will be disposed of thirty days after the final report has been delivered. If you have any questions or concerns, please feel free to call our Customer Service Department.

Laurel Stoddard

Laboratory Director

REVIEWED

By ESS Laboratory at 4:37 pm, Mar 14, 2023

Analytical Summary

The project as described above has been analyzed in accordance with the ESS Quality Assurance Plan. This plan utilizes the following methodologies: US EPA SW-846, US EPA Methods for Chemical Analysis of Water and Wastes per 40 CFR Part 136, APHA Standard Methods for the Examination of Water and Wastewater, American Society for Testing and Materials (ASTM), and other recognized methodologies. The analyses with these noted observations are in conformance to the Quality Assurance Plan. In chromatographic analysis, manual integration is frequently used instead of automated integration because it produces more accurate results.

The test results present in this report are in compliance with TNI and relative state standards, and/or client Quality Assurance Project Plans (QAPP). The laboratory has reviewed the following: Sample Preservations, Hold Times, Initial Calibrations, Continuing Calibrations, Method Blanks, Blank Spikes, Blank Spike Duplicates, Duplicates, Matrix Spikes, Matrix Spike Duplicates, Surrogates and Internal Standards. Any results which were found to be outside of the recommended ranges stated in our SOPs will be noted in the Project Narrative.

Subcontracted Analyses

Aerobiology Boston - Woburn, MA Asbestos Pace Analytical, Inc. - Minneapolis, MN Dioxin

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston and Sampson Engineers, Inc.

Client Project ID: Claxton Field ESS Laboratory Work Order: 23B0634

SAMPLE RECEIPT

The following samples were received on February 17, 2023 for the analyses specified on the enclosed Chain of Custody Record.

To achieve CAM compliance for MCP data, ESS Laboratory has reviewed all QA/QC Requirements and Performance Standards listed in each method. Holding times and preservation have also been reviewed. All CAM requirements have been performed and achieved unless noted in the project narrative.

Each method has been set-up in the laboratory to reach required MCP standards. The methods for aqueous VOA and Soil Methanol VOA have known limitations for certain analytes. The regulatory standards may not be achieved due to these limitations. In addition, for all methods, matrix interferences, dilutions, and %Solids may elevate method reporting limits above regulatory standards. ESS Laboratory can provide, upon request, a Limit Checker (regulatory standard comparison spreadsheet) electronic deliverable which will highlight these exceedances.

Question I: All samples for SVOA were analyzed for a subset of the required MCP list per the client's request.

Lab Number	Sample Name	Matrix	Analysis
23B0634-01	B-201 - 0-1	Soil	6010C, 7471B, 8270D, SUB
23B0634-02	B-201 - 2-4	Soil	6010C, 6020A, 7471B, 8270D, SUB
23B0634-03	B-201 - 4-6	Soil	6010C, 6020A, 7471B, 8270D, SUB
23B0634-04	B-202 - 0-1	Soil	6010C, 7471B, 8270D, SUB
23B0634-05	B-202 - 2-4	Soil	6010C, 6020A, 7471B, 8270D, SUB
23B0634-06	B-203 - 0-1	Soil	6010C, 6020A, 7471B, 8270D, SUB
23B0634-07	B-203 - 2-4	Soil	6010C, 7471B, 8270D, SUB
23B0634-08	B-203 - 4-6	Soil	6010C, 6020A, 7471B, 8270D, SUB
23B0634-09	B-204 - 0-1	Soil	6010C, 7471B, 8270D, SUB
23B0634-10	B-204 - 2-4	Soil	6010C, 7471B, 8270D, SUB
23B0634-11	B-204 - 4-6	Soil	6010C, 6020A, 7471B, 8270D, SUB
23B0634-12	B-205 - 0-1	Soil	6010C, 7471B, 8270D, SUB
23B0634-13	B-205 - 2-4	Soil	6010C, 7471B, 8270D, SUB
23B0634-14	B-205 - 4-6	Soil	6010C, 7471B, 8270D, SUB
23B0634-15	B-206 - 0-1	Soil	6010C, 7471B, 8270D, SUB
23B0634-16	B-206 - 2-4	Soil	6010C, 6020A, 7471B, 8270D, SUB
23B0634-17	B-206 - 4-5	Soil	6010C, 7471B, 8270D, SUB
23B0634-18	B-207F - 4-6	Soil	6010C, 7471B, 8270D, SUB
23B0634-19	CF-STOCKPILE	Soil	6010C, 7471B, 8270D, SUB

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston and Sampson Engineers, Inc.

Client Project ID: Claxton Field ESS Laboratory Work Order: 23B0634

PROJECT NARRATIVE

23B0634-02	Elevated Method Reporting Limits due to sample matrix (EL).
	Silver
23B0634-05	Elevated Method Reporting Limits due to sample matrix (EL).
	Silver
23B0634-11	Elevated Method Reporting Limits due to sample matrix (EL).
	Silver
23B0634-16	Elevated Method Reporting Limits due to sample matrix (EL).
	Silver
23B0634-17	Elevated Method Reporting Limits due to sample matrix (EL).
	Lead
DB32002-BSD1	Blank Spike recovery is below lower control limit (B-).
	Cadmium (79% @ 80-120%), Selenium (79% @ 80-120%), Zinc (77% @ 80-120%)

No other observations noted.

End of Project Narrative.

Total Metals

DATA USABILITY LINKS

To ensure you are viewing the most current version of the documents below, please clear your internet cookies for www.ESSLaboratory.com. Consult your IT Support personnel for information on how to clear your internet cookies.

Definitions of Quality Control Parameters

Semivolatile Organics Internal Standard Information

Semivolatile Organics Surrogate Information

Volatile Organics Internal Standard Information

Volatile Organics Surrogate Information

EPH and VPH Alkane Lists

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston and Sampson Engineers, Inc.

Client Project ID: Claxton Field ESS Laboratory Work Order: 23B0634

CURRENT SW-846 METHODOLOGY VERSIONS

Analytical Methods

1010A - Flashpoint

6010C - ICP

6020A - ICP MS

7010 - Graphite Furnace

7196A - Hexavalent Chromium

7470A - Aqueous Mercury

7471B - Solid Mercury

8011 - EDB/DBCP/TCP

8015C - GRO/DRO

8081B - Pesticides

8082A - PCB

8100M - TPH

8151A - Herbicides

8260B - VOA

8270D - SVOA

8270D SIM - SVOA Low Level

9014 - Cyanide

9038 - Sulfate

9040C - Aqueous pH

9045D - Solid pH (Corrosivity)

9050A - Specific Conductance

9056A - Anions (IC)

9060A - TOC

9095B - Paint Filter

MADEP 04-1.1 - EPH

MADEP 18-2.1 - VPH

Prep Methods

3005A - Aqueous ICP Digestion

3020A - Aqueous Graphite Furnace / ICP MS Digestion

3050B - Solid ICP / Graphite Furnace / ICP MS Digestion

3060A - Solid Hexavalent Chromium Digestion

3510C - Separatory Funnel Extraction

3520C - Liquid / Liquid Extraction

3540C - Manual Soxhlet Extraction

3541 - Automated Soxhlet Extraction

3546 - Microwave Extraction

3580A - Waste Dilution

5030B - Aqueous Purge and Trap

5030C - Aqueous Purge and Trap

5035A - Solid Purge and Trap

SW846 Reactivity Methods 7.3.3.2 (Reactive Cyanide) and 7.3.4.1 (Reactive Sulfide) have been withdrawn by EPA. These methods are reported per client request and are not NELAP accredited.

Page 4 of 106

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston and Sampson Engineers, Inc.

Client Project ID: Claxton Field ESS Laboratory Work Order: 23B0634

MassDEP Analytical Protocol Certification Form

	MADEP R	TN:				<u> </u>				
This	form provides	certifica	ation for the follo	wing	data set: 23B0634-01 t	hrough 23B0634-19				
Mat	rices: () Groun	nd Wat	er/Surface Water		(x) Soil/Sediment	() Drinking Water	() Air	() Other:_		
CA	M Protocol (ch	eck all	that apply below	·):						
()	8260 VOC CAM II A	(X)	7470/7471 Hg CAM III B	() MassDEP VPH (GC/PID/FID) CAM IV A	() 8082 PCB CAM V A	(0014 Total Cyanide/PAC CAM VI A	() 6860 Perchl CAM VIII B	lorate
(x)	8270 SVOC CAM II B	()	7010 Metals CAM III C	() MassDEP VPH (GC/MS) CAM IV C	() 8081 Pesticides CAM V B	() 7	7196 Hex Cr CAM VI B	() MassDEP A CAM IX A	APH
(x)	6010 Metals CAM III A	(X)	6020 Metals CAM III D	() MassDEP EPH CAM IV B	() 8151 Herbicides CAM V C	, ,	xplosives CAM VIII A	() TO-15 VOC CAM IX B	
		F	Affirmative respo	onses	to questions A throug	gh F are required for "I	Presumptive	Certainty" sta	itus	
A	-	es recei	ved in a condition	con	sistent with those descr	ibed on the Chain-of-Cust pared/analyzed within me	tody, properl	y	Yes(x) No) (
В	•	_	- '			pecified in the selected CA	-		Yes (x) No	o()
С	•			-	vtical response actions and ard non-conforman	specified in the selected Caces?	CAM protoco	ol(s)	Yes (x) No	o()
D	Does the labora	tory re	port comply with	all th	e reporting requiremen	ts specified in the CAM Veporting of Analytical Da		ty	$\operatorname{Yes}(\mathbf{x})$ No	o()
Е	VPH, EPH, AP	H and	TO-15 only: a. Wa	as eac	-	vithout significant modific		efer	Yes () No	o()
			* *	-		orted for each method?			Yes () No	0()
F				_	erformance standard no esponses to Questions	on-conformances identified A through E)?	d and evalua	ted	$\operatorname{Yes}(\mathbf{x})$ No) ()
			Responses to	Que	stions G, H and I belov	w are required for '''Pres	umptive Cert	tainty'' status		
G	Data User Note:	: Data t	hat achieve ''Pres	umpt		fied in the selected CAM ay not necessarily meet the and WSC-07-350.			Yes () No) (X)*
Н					in the CAM protocol(Yes () No	o (x)*
I						elected CAM protocol(s)?			Yes () No) (X)*
					n attached laboratory	y narrative. Shat based upon my par	sonal inauje	n, of those vesn	nonsibla	

I, the undersigned, attest under the pains and penalties of perjury that, based upon my personal inquiry of those responsible for obtaining the information, the material contained in this analytical report is, to the best of my knowledge and belief, accurate and complete.

Signature: ______ Date: March 14, 2023
Printed Name: Laurel Stoddard Position: Laboratory Director

185 Frances Avenue, Cranston, RI 02910-2211 Tel: 401-461-7181 Fax: 401-461-4486 http://www.ESSLaboratory.com

Dependability ◆ Quality ◆ Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston and Sampson Engineers, Inc.

Client Project ID: Claxton Field Client Sample ID: B-201 - 0-1 Date Sampled: 02/16/23 10:45

Percent Solids: 86

ESS Laboratory Work Order: 23B0634 ESS Laboratory Sample ID: 23B0634-01

Sample Matrix: Soil Units: mg/kg dry

Extraction Method: 3050B

Total Metals

<u>Analyte</u>	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyst		$\frac{I/V}{2.2}$	<u>F/V</u>	Batch
Antimony	ND (5.03)		6010C		1	CEV	02/21/23 11:00	2.3	100	DB32002
Arsenic	4.84 (2.52)		6010C		1	CEV	02/21/23 11:00	2.3	100	DB32002
Barium	44.7 (2.52)		6010C		1	CEV	02/21/23 11:00	2.3	100	DB32002
Beryllium	0.29 (0.11)		6010C		1	CEV	02/21/23 11:00	2.3	100	DB32002
Cadmium	ND (0.50)		6010C		1	CEV	02/21/23 11:00	2.3	100	DB32002
Chromium	12.7 (1.01)		6010C		1	CEV	02/21/23 11:00	2.3	100	DB32002
Lead	112 (5.03)		6010C		1	CEV	02/21/23 11:00	2.3	100	DB32002
Mercury	0.042 (0.033)		7471B		1	YIV	02/23/23 10:41	0.69	40	DB32003
Nickel	9.46 (2.52)		6010C		1	CEV	02/21/23 11:00	2.3	100	DB32002
Selenium	ND (5.03)		6010C		1	CEV	02/21/23 11:00	2.3	100	DB32002
Silver	ND (0.50)		6010C		1	CEV	02/21/23 11:00	2.3	100	DB32002
Thallium	ND (5.03)		6010C		1	CEV	02/21/23 11:00	2.3	100	DB32002
Vanadium	20.8 (1.01)		6010C		1	CEV	02/21/23 11:00	2.3	100	DB32002
Zinc	63.0 (2.52)		6010C		1	CEV	02/21/23 11:00	2.3	100	DB32002

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston and Sampson Engineers, Inc.

Client Project ID: Claxton Field Client Sample ID: B-201 - 0-1 Date Sampled: 02/16/23 10:45

Percent Solids: 86 Initial Volume: 20.2g Final Volume: 1ml

Extraction Method: 3546

ESS Laboratory Work Order: 23B0634 ESS Laboratory Sample ID: 23B0634-01

Sample Matrix: Soil Units: mg/kg dry Analyst: TJ

Prepared: 2/21/23 12:35

8270D Polynuclear Aromatic Hydrocarbons

Analyte	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
2-Methylnaphthalene	ND (0.287)		8270D		1	02/21/23 20:51	D3B0372	DB32111
Acenaphthene	ND (0.287)		8270D		1	02/21/23 20:51	D3B0372	DB32111
Acenaphthylene	ND (0.287)		8270D		1	02/21/23 20:51	D3B0372	DB32111
Anthracene	ND (0.287)		8270D		1	02/21/23 20:51	D3B0372	DB32111
Benzo(a)anthracene	ND (0.287)		8270D		1	02/21/23 20:51	D3B0372	DB32111
Benzo(a)pyrene	ND (0.287)		8270D		1	02/21/23 20:51	D3B0372	DB32111
Benzo(b)fluoranthene	ND (0.287)		8270D		1	02/21/23 20:51	D3B0372	DB32111
Benzo(g,h,i)perylene	ND (0.287)		8270D		1	02/21/23 20:51	D3B0372	DB32111
Benzo(k)fluoranthene	ND (0.287)		8270D		1	02/21/23 20:51	D3B0372	DB32111
Chrysene	ND (0.287)		8270D		1	02/21/23 20:51	D3B0372	DB32111
Dibenzo(a,h)Anthracene	ND (0.287)		8270D		1	02/21/23 20:51	D3B0372	DB32111
Fluoranthene	ND (0.287)		8270D		1	02/21/23 20:51	D3B0372	DB32111
Fluorene	ND (0.287)		8270D		1	02/21/23 20:51	D3B0372	DB32111
Indeno(1,2,3-cd)Pyrene	ND (0.287)		8270D		1	02/21/23 20:51	D3B0372	DB32111
Naphthalene	ND (0.287)		8270D		1	02/21/23 20:51	D3B0372	DB32111
Phenanthrene	ND (0.287)		8270D		1	02/21/23 20:51	D3B0372	DB32111
Pyrene	ND (0.287)		8270D		1	02/21/23 20:51	D3B0372	DB32111
	9	%Recovery	Qualifier	Limits				

Surrogate: 1,2-Dichlorobenzene-d4	67 %	30-130
Surrogate: 2-Fluorobiphenyl	73 %	30-130
Surrogate: Nitrobenzene-d5	69 %	30-130
Surrogate: p-Terphenyl-d14	89 %	30-130

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston and Sampson Engineers, Inc.

Client Project ID: Claxton Field Client Sample ID: B-201 - 0-1 Date Sampled: 02/16/23 10:45

ESS Laboratory Work Order: 23B0634 ESS Laboratory Sample ID: 23B0634-01

Sample Matrix: Soil

Subcontracted Analysis

Analyte Results (MRL) **MDL** Method **Limit** Analyst Analyzed **Units Batch** DF Asbestos See Attached (N/A)

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181 Dependability

Quality

Fax: 401-461-4486 Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston and Sampson Engineers, Inc.

Client Project ID: Claxton Field Client Sample ID: B-201 - 2-4 Date Sampled: 02/16/23 10:45

Percent Solids: 84

ESS Laboratory Work Order: 23B0634 ESS Laboratory Sample ID: 23B0634-02

Sample Matrix: Soil Units: mg/kg dry

Extraction Method: 3050B

Total Metals

Analyte	Results (MRL)		thod Limit	$\underline{\mathbf{DF}}_{1}$	Analyst CEV	<u>Analyzed</u> 02/21/23 11:02	<u>I/V</u> 2.27	$\frac{\mathbf{F/V}}{100}$	Batch DB32002
Antimony	ND (5.24)		.0C	1					
Arsenic	8.29 (2.62)	60	.0C	1	CEV	02/21/23 11:02	2.27	100	DB32002
Barium	409 (2.62)	60	.0C	1	CEV	02/21/23 11:02	2.27	100	DB32002
Beryllium	ND (0.12)	60	0C	1	CEV	02/21/23 11:02	2.27	100	DB32002
Cadmium	8.91 (0.52)	60	.0C	1	CEV	02/21/23 11:02	2.27	100	DB32002
Chromium	104 (5.24)	60	.0C	5	CEV	02/22/23 16:19	2.27	100	DB32002
Lead	399 (26.2)	60	.0C	5	CEV	02/22/23 16:19	2.27	100	DB32002
Mercury	0.271 (0.039)	74	71B	1	YIV	02/23/23 10:43	0.61	40	DB32003
Nickel	107 (2.62)	60	.0C	1	CEV	02/21/23 11:02	2.27	100	DB32002
Selenium	ND (1.05)	602	20A	1	BJV	02/23/23 16:50	2.27	100	DB32002
Silver	EL ND (2.62)	60	.0C	5	CEV	02/22/23 16:19	2.27	100	DB32002
Thallium	ND (5.24)	60	.0C	1	CEV	02/21/23 11:02	2.27	100	DB32002
Vanadium	39.8 (1.05)	60	.0C	1	CEV	02/21/23 11:02	2.27	100	DB32002
Zinc	1630 (26.2)	60	.0C	10	CEV	02/22/23 16:17	2.27	100	DB32002

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston and Sampson Engineers, Inc.

Client Project ID: Claxton Field Client Sample ID: B-201 - 2-4 Date Sampled: 02/16/23 10:45

Percent Solids: 84 Initial Volume: 19.7g Final Volume: 1ml

Extraction Method: 3546

ESS Laboratory Work Order: 23B0634 ESS Laboratory Sample ID: 23B0634-02

Sample Matrix: Soil Units: mg/kg dry Analyst: TJ

Prepared: 2/21/23 12:35

8270D Polynuclear Aromatic Hydrocarbons

Analyte 2-Methylnaphthalene	Results (MRL) ND (0.302)	MDL	Method 8270D	<u>Limit</u>	<u>DF</u>	Analyzed 02/21/23 21:21	Sequence D3B0372	Batch DB32111
Acenaphthene	ND (0.302)		8270D		1	02/21/23 21:21	D3B0372	DB32111
Acenaphthylene	ND (0.302)		8270D		1	02/21/23 21:21	D3B0372	DB32111
Anthracene	ND (0.302)		8270D		1	02/21/23 21:21	D3B0372	DB32111
Benzo(a)anthracene	0.523 (0.302)		8270D		1	02/21/23 21:21	D3B0372	DB32111
Benzo(a)pyrene	0.517 (0.302)		8270D		1	02/21/23 21:21	D3B0372	DB32111
Benzo(b)fluoranthene	0.338 (0.302)		8270D		1	02/21/23 21:21	D3B0372	DB32111
Benzo(g,h,i)perylene	0.402 (0.302)		8270D		1	02/21/23 21:21	D3B0372	DB32111
Benzo(k)fluoranthene	0.321 (0.302)		8270D		1	02/21/23 21:21	D3B0372	DB32111
Chrysene	0.763 (0.302)		8270D		1	02/21/23 21:21	D3B0372	DB32111
Dibenzo(a,h)Anthracene	ND (0.302)		8270D		1	02/21/23 21:21	D3B0372	DB32111
Fluoranthene	0.729 (0.302)		8270D		1	02/21/23 21:21	D3B0372	DB32111
Fluorene	ND (0.302)		8270D		1	02/21/23 21:21	D3B0372	DB32111
Indeno(1,2,3-cd)Pyrene	0.319 (0.302)		8270D		1	02/21/23 21:21	D3B0372	DB32111
Naphthalene	ND (0.302)		8270D		1	02/21/23 21:21	D3B0372	DB32111
Phenanthrene	0.791 (0.302)		8270D		1	02/21/23 21:21	D3B0372	DB32111
Pyrene	1.10 (0.302)		8270D		1	02/21/23 21:21	D3B0372	DB32111

Qualifier

Limits

	,	
Surrogate: 1,2-Dichlorobenzene-d4	67 %	30-130
Surrogate: 2-Fluorobiphenyl	78 %	30-130
Surrogate: Nitrobenzene-d5	69 %	30-130
Surrogate: p-Terphenyl-d14	85 %	30-130

%Recovery

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston and Sampson Engineers, Inc.

Client Project ID: Claxton Field Client Sample ID: B-201 - 2-4 Date Sampled: 02/16/23 10:45 ESS Laboratory Work Order: 23B0634 ESS Laboratory Sample ID: 23B0634-02

Sample Matrix: Soil

Subcontracted Analysis

 Analyte Asbestos
 Results (MRL) See Attached (N/A)
 MDL Method
 Limit Limit Limit
 DF Malyst Analyzed
 Analyzed Units
 Batch

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston and Sampson Engineers, Inc.

Client Project ID: Claxton Field Client Sample ID: B-201 - 4-6 Date Sampled: 02/16/23 10:45

Percent Solids: 79

ESS Laboratory Work Order: 23B0634 ESS Laboratory Sample ID: 23B0634-03

Sample Matrix: Soil Units: mg/kg dry

Extraction Method: 3050B

Total Metals

<u>Analyte</u>	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyst			F/V	Batch
Antimony	ND (5.74)		6010C		1	CEV	02/21/23 11:0	4 2.2	100	DB32002
Arsenic	5.45 (2.87)		6010C		1	CEV	02/21/23 11:0	4 2.2	100	DB32002
Barium	78.0 (2.87)		6010C		1	CEV	02/21/23 11:0	4 2.2	100	DB32002
Beryllium	ND (0.13)		6010C		1	CEV	02/21/23 11:0	4 2.2	100	DB32002
Cadmium	0.63 (0.57)		6010C		1	CEV	02/21/23 11:0	4 2.2	100	DB32002
Chromium	19.5 (5.74)		6010C		5	CEV	02/23/23 10:3	6 2.2	100	DB32002
Lead	302 (28.7)		6010C		5	CEV	02/23/23 10:3	6 2.2	100	DB32002
Mercury	0.107 (0.036)		7471B		1	YIV	02/23/23 10:4	5 0.69	40	DB32003
Nickel	27.8 (2.87)		6010C		1	CEV	02/21/23 11:0	4 2.2	100	DB32002
Selenium	ND (1.15)		6020A		1	BJV	02/23/23 16:5	6 2.2	100	DB32002
Silver	ND (2.87)		6010C		5	CEV	02/23/23 10:3	6 2.2	100	DB32002
Thallium	ND (5.74)		6010C		1	CEV	02/21/23 11:0	4 2.2	100	DB32002
Vanadium	13.9 (1.15)		6010C		1	CEV	02/21/23 11:0	4 2.2	100	DB32002
Zinc	356 (2.87)		6010C		1	CEV	02/21/23 11:0	4 2.2	100	DB32002

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston and Sampson Engineers, Inc.

Client Project ID: Claxton Field Client Sample ID: B-201 - 4-6 Date Sampled: 02/16/23 10:45

Percent Solids: 79 Initial Volume: 19.6g Final Volume: 1ml

Extraction Method: 3546

ESS Laboratory Work Order: 23B0634 ESS Laboratory Sample ID: 23B0634-03

Sample Matrix: Soil Units: mg/kg dry Analyst: TJ

Prepared: 2/21/23 12:35

8270D Polynuclear Aromatic Hydrocarbons

<u>Analyte</u>	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
2-Methylnaphthalene	ND (0.645)		8270D		2	02/21/23 21:51	D3B0372	DB32111
Acenaphthene	ND (0.645)		8270D		2	02/21/23 21:51	D3B0372	DB32111
Acenaphthylene	ND (0.645)		8270D		2	02/21/23 21:51	D3B0372	DB32111
Anthracene	ND (0.645)		8270D		2	02/21/23 21:51	D3B0372	DB32111
Benzo(a)anthracene	0.827 (0.645)		8270D		2	02/21/23 21:51	D3B0372	DB32111
Benzo(a)pyrene	0.790 (0.645)		8270D		2	02/21/23 21:51	D3B0372	DB32111
Benzo(b)fluoranthene	ND (0.645)		8270D		2	02/21/23 21:51	D3B0372	DB32111
Benzo(g,h,i)perylene	ND (0.645)		8270D		2	02/21/23 21:51	D3B0372	DB32111
Benzo(k)fluoranthene	ND (0.645)		8270D		2	02/21/23 21:51	D3B0372	DB32111
Chrysene	1.16 (0.645)		8270D		2	02/21/23 21:51	D3B0372	DB32111
Dibenzo(a,h)Anthracene	ND (0.645)		8270D		2	02/21/23 21:51	D3B0372	DB32111
Fluoranthene	0.927 (0.645)		8270D		2	02/21/23 21:51	D3B0372	DB32111
Fluorene	ND (0.645)		8270D		2	02/21/23 21:51	D3B0372	DB32111
Indeno(1,2,3-cd)Pyrene	ND (0.645)		8270D		2	02/21/23 21:51	D3B0372	DB32111
Naphthalene	ND (0.645)		8270D		2	02/21/23 21:51	D3B0372	DB32111
Phenanthrene	0.663 (0.645)		8270D		2	02/21/23 21:51	D3B0372	DB32111
Pyrene	1.49 (0.645)		8270D		2	02/21/23 21:51	D3B0372	DB32111

Qualifier

Limits

	•	
Surrogate: 1,2-Dichlorobenzene-d4	80 %	30-130
Surrogate: 2-Fluorobiphenyl	87 %	30-130
Surrogate: Nitrobenzene-d5	80 %	30-130
Surrogate: p-Terphenyl-d14	89 %	30-130

%Recovery

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston and Sampson Engineers, Inc.

Client Project ID: Claxton Field Client Sample ID: B-201 - 4-6 Date Sampled: 02/16/23 10:45 ESS Laboratory Work Order: 23B0634 ESS Laboratory Sample ID: 23B0634-03

Sample Matrix: Soil

Subcontracted Analysis

 Analyte Asbestos
 Results (MRL) See Attached (N/A)
 MDL Method
 Limit Limit Limit
 DF Malyst Analyzed
 Analyzed Units
 Batch

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston and Sampson Engineers, Inc.

Client Project ID: Claxton Field Client Sample ID: B-202 - 0-1 Date Sampled: 02/16/23 10:15

Percent Solids: 97

ESS Laboratory Work Order: 23B0634 ESS Laboratory Sample ID: 23B0634-04

Sample Matrix: Soil Units: mg/kg dry

Extraction Method: 3050B

Total Metals

<u>Analyte</u>	Results (MRL)	MDL Metho				$\frac{I/V}{2002}$	<u>F/V</u>	Batch
Antimony	ND (5.10)	6010C	I	CEV	02/21/23 11:06	2.03	100	DB32002
Arsenic	3.13 (2.55)	6010C	1	CEV	02/21/23 11:06	2.03	100	DB32002
Barium	46.3 (2.55)	6010C	1	CEV	02/21/23 11:06	2.03	100	DB32002
Beryllium	0.34 (0.11)	6010C	1	CEV	02/21/23 11:06	2.03	100	DB32002
Cadmium	ND (0.51)	6010C	1	CEV	02/21/23 11:06	2.03	100	DB32002
Chromium	11.7 (1.02)	6010C	1	CEV	02/21/23 11:06	2.03	100	DB32002
Lead	129 (5.10)	6010C	1	CEV	02/21/23 11:06	2.03	100	DB32002
Mercury	0.085 (0.030)	7471B	1	YIV	02/23/23 10:51	0.69	40	DB32003
Nickel	8.20 (2.55)	6010C	1	CEV	02/21/23 11:06	2.03	100	DB32002
Selenium	ND (5.10)	6010C	1	CEV	02/21/23 11:06	2.03	100	DB32002
Silver	ND (0.51)	6010C	1	CEV	02/21/23 11:06	2.03	100	DB32002
Thallium	ND (5.10)	6010C	1	CEV	02/21/23 11:06	2.03	100	DB32002
Vanadium	15.4 (1.02)	6010C	1	CEV	02/21/23 11:06	2.03	100	DB32002
Zinc	76.8 (2.55)	6010C	1	CEV	02/21/23 11:06	2.03	100	DB32002

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston and Sampson Engineers, Inc.

Client Project ID: Claxton Field Client Sample ID: B-202 - 0-1 Date Sampled: 02/16/23 10:15

Percent Solids: 97 Initial Volume: 20.8g Final Volume: 1ml

Extraction Method: 3546

ESS Laboratory Work Order: 23B0634 ESS Laboratory Sample ID: 23B0634-04

Sample Matrix: Soil Units: mg/kg dry Analyst: TJ

Prepared: 2/21/23 12:35

8270D Polynuclear Aromatic Hydrocarbons

Analyte 2-Methylnaphthalene	Results (MRL) ND (0.498)	MDL Method 8270D	$\frac{\textbf{Limit}}{2} \qquad \frac{\textbf{DF}}{2}$	<u>Analyzed</u> 02/21/23 22:21	Sequence D3B0372	Batch DB32111
Acenaphthene	ND (0.498)	8270D	2	02/21/23 22:21	D3B0372	DB32111
Acenaphthylene	ND (0.498)	8270D	2	02/21/23 22:21	D3B0372	DB32111
Anthracene	ND (0.498)	8270D	2	02/21/23 22:21	D3B0372	DB32111
Benzo(a)anthracene	0.871 (0.498)	8270D	2	02/21/23 22:21	D3B0372	DB32111
Benzo(a)pyrene	0.850 (0.498)	8270D	2	02/21/23 22:21	D3B0372	DB32111
Benzo(b)fluoranthene	0.667 (0.498)	8270D	2	02/21/23 22:21	D3B0372	DB32111
Benzo(g,h,i)perylene	ND (0.498)	8270D	2	02/21/23 22:21	D3B0372	DB32111
Benzo(k)fluoranthene	0.623 (0.498)	8270D	2	02/21/23 22:21	D3B0372	DB32111
Chrysene	0.975 (0.498)	8270D	2	02/21/23 22:21	D3B0372	DB32111
Dibenzo(a,h)Anthracene	ND (0.498)	8270D	2	02/21/23 22:21	D3B0372	DB32111
Fluoranthene	1.82 (0.498)	8270D	2	02/21/23 22:21	D3B0372	DB32111
Fluorene	ND (0.498)	8270D	2	02/21/23 22:21	D3B0372	DB32111
Indeno(1,2,3-cd)Pyrene	ND (0.498)	8270D	2	02/21/23 22:21	D3B0372	DB32111
Naphthalene	ND (0.498)	8270D	2	02/21/23 22:21	D3B0372	DB32111
Phenanthrene	1.17 (0.498)	8270D	2	02/21/23 22:21	D3B0372	DB32111
Pyrene	1.60 (0.498)	8270D	2	02/21/23 22:21	D3B0372	DB32111

Qualifier

Limits

	,	
Surrogate: 1,2-Dichlorobenzene-d4	77 %	30-130
Surrogate: 2-Fluorobiphenyl	83 %	30-130
Surrogate: Nitrobenzene-d5	82 %	30-130
Surrogate: p-Terphenyl-d14	86 %	30-130

%Recovery

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston and Sampson Engineers, Inc.

Client Project ID: Claxton Field Client Sample ID: B-202 - 0-1 Date Sampled: 02/16/23 10:15 ESS Laboratory Work Order: 23B0634 ESS Laboratory Sample ID: 23B0634-04

Sample Matrix: Soil

Subcontracted Analysis

 Analyte Asbestos
 Results (MRL) See Attached (N/A)
 MDL Method
 Limit Limit Limit
 DF Malyst Analyzed
 Analyzed Units
 Batch

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston and Sampson Engineers, Inc.

Client Project ID: Claxton Field Client Sample ID: B-202 - 2-4 Date Sampled: 02/16/23 10:15

Percent Solids: 79

ESS Laboratory Work Order: 23B0634 ESS Laboratory Sample ID: 23B0634-05

Sample Matrix: Soil Units: mg/kg dry

Extraction Method: 3050B

Total Metals

<u>Analyte</u>	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyst		I/V	<u>F/V</u>	Batch
Antimony	ND (5.94)		6010C		1	CEV	02/21/23 11:08	2.14	100	DB32002
Arsenic	40.6 (2.97)		6010C		1	CEV	02/21/23 11:08	2.14	100	DB32002
Barium	304 (2.97)		6010C		1	CEV	02/21/23 11:08	2.14	100	DB32002
Beryllium	0.27 (0.13)		6010C		1	CEV	02/21/23 11:08	2.14	100	DB32002
Cadmium	3.11 (0.59)		6010C		1	CEV	02/21/23 11:08	2.14	100	DB32002
Chromium	35.5 (5.94)		6010C		5	CEV	02/23/23 10:38	2.14	100	DB32002
Lead	1030 (29.7)		6010C		5	CEV	02/23/23 10:38	2.14	100	DB32002
Mercury	0.647 (0.040)		7471B		1	YIV	02/23/23 10:54	0.63	40	DB32003
Nickel	32.8 (2.97)		6010C		1	CEV	02/21/23 11:08	2.14	100	DB32002
Selenium	ND (1.19)		6020A		1	BJV	02/23/23 17:01	2.14	100	DB32002
Silver	EL ND (2.97)		6010C		5	CEV	02/23/23 10:38	2.14	100	DB32002
Thallium	ND (5.94)		6010C		1	CEV	02/21/23 11:08	2.14	100	DB32002
Vanadium	25.1 (1.19)		6010C		1	CEV	02/21/23 11:08	2.14	100	DB32002
Zinc	639 (2.97)		6010C		1	CEV	02/21/23 11:08	2.14	100	DB32002

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston and Sampson Engineers, Inc.

Client Project ID: Claxton Field Client Sample ID: B-202 - 2-4 Date Sampled: 02/16/23 10:15

Percent Solids: 79 Initial Volume: 20.7g Final Volume: 1ml Extraction Method: 3546 ESS Laboratory Work Order: 23B0634 ESS Laboratory Sample ID: 23B0634-05

Sample Matrix: Soil Units: mg/kg dry Analyst: TJ

Prepared: 2/21/23 12:35

8270D Polynuclear Aromatic Hydrocarbons

<u>Analyte</u>	Results (MRL)	MDL Method	<u>Limit</u> <u>DF</u>	Analyzed	Sequence	Batch
2-Methylnaphthalene	ND (0.307)	8270D	1	02/21/23 22:51	D3B0372	DB32111
Acenaphthene	ND (0.307)	8270D	1	02/21/23 22:51	D3B0372	DB32111
Acenaphthylene	ND (0.307)	8270D	1	02/21/23 22:51	D3B0372	DB32111
Anthracene	ND (0.307)	8270D	1	02/21/23 22:51	D3B0372	DB32111
Benzo(a)anthracene	ND (0.307)	8270D	1	02/21/23 22:51	D3B0372	DB32111
Benzo(a)pyrene	ND (0.307)	8270D	1	02/21/23 22:51	D3B0372	DB32111
Benzo(b)fluoranthene	ND (0.307)	8270D	1	02/21/23 22:51	D3B0372	DB32111
Benzo(g,h,i)perylene	ND (0.307)	8270D	1	02/21/23 22:51	D3B0372	DB32111
Benzo(k)fluoranthene	ND (0.307)	8270D	1	02/21/23 22:51	D3B0372	DB32111
Chrysene	ND (0.307)	8270D	1	02/21/23 22:51	D3B0372	DB32111
Dibenzo(a,h)Anthracene	ND (0.307)	8270D	1	02/21/23 22:51	D3B0372	DB32111
Fluoranthene	ND (0.307)	8270D	1	02/21/23 22:51	D3B0372	DB32111
Fluorene	ND (0.307)	8270D	1	02/21/23 22:51	D3B0372	DB32111
Indeno(1,2,3-cd)Pyrene	ND (0.307)	8270D	1	02/21/23 22:51	D3B0372	DB32111
Naphthalene	ND (0.307)	8270D	1	02/21/23 22:51	D3B0372	DB32111
Phenanthrene	ND (0.307)	8270D	1	02/21/23 22:51	D3B0372	DB32111
Pyrene	ND (0.307)	8270D	1	02/21/23 22:51	D3B0372	DB32111
	%	Recovery Qualifier	Limits			

 Surrogate: 1,2-Dichlorobenzene-d4
 73 %
 30-130

 Surrogate: 2-Fluorobiphenyl
 79 %
 30-130

 Surrogate: Nitrobenzene-d5
 75 %
 30-130

 Surrogate: p-Terphenyl-d14
 86 %
 30-130

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston and Sampson Engineers, Inc.

Client Project ID: Claxton Field Client Sample ID: B-202 - 2-4 Date Sampled: 02/16/23 10:15 ESS Laboratory Work Order: 23B0634 ESS Laboratory Sample ID: 23B0634-05

Sample Matrix: Soil

Subcontracted Analysis

 Analyte Asbestos
 Results (MRL) See Attached (N/A)
 MDL Method
 Limit Limit Limit
 DF Malyst Analyzed
 Analyzed Units
 Batch

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston and Sampson Engineers, Inc.

Client Project ID: Claxton Field Client Sample ID: B-203 - 0-1 Date Sampled: 02/16/23 13:30

Percent Solids: 68

ESS Laboratory Work Order: 23B0634 ESS Laboratory Sample ID: 23B0634-06

Sample Matrix: Soil Units: mg/kg dry

Extraction Method: 3050B

Total Metals

<u>Analyte</u>	Results (MRL)	MDL Method	<u>l Limit DF</u>			<u>I/V</u>	<u>F/V</u>	Batch
Antimony	ND (1.36)	6020A	I	BJV	02/23/23 17:07	2.14	100	DB32002
Arsenic	8.88 (3.41)	6010C	1	CEV	02/21/23 11:20	2.14	100	DB32002
Barium	72.5 (3.41)	6010C	1	CEV	02/21/23 11:20	2.14	100	DB32002
Beryllium	0.65 (0.30)	6010C	2	CEV	02/22/23 16:21	2.14	100	DB32002
Cadmium	ND (0.68)	6010C	1	CEV	02/21/23 11:20	2.14	100	DB32002
Chromium	27.1 (1.36)	6010C	1	CEV	02/21/23 11:20	2.14	100	DB32002
Lead	50.2 (6.82)	6010C	1	CEV	02/21/23 11:20	2.14	100	DB32002
Mercury	0.114 (0.048)	7471B	1	YIV	02/23/23 10:56	0.6	40	DB32003
Nickel	16.5 (3.41)	6010C	1	CEV	02/21/23 11:20	2.14	100	DB32002
Selenium	ND (6.82)	6010C	1	CEV	02/21/23 11:20	2.14	100	DB32002
Silver	ND (0.68)	6010C	1	CEV	02/21/23 11:20	2.14	100	DB32002
Thallium	ND (0.68)	6020A	1	BJV	02/23/23 17:07	2.14	100	DB32002
Vanadium	34.7 (1.36)	6010C	1	CEV	02/21/23 11:20	2.14	100	DB32002
Zinc	75.1 (3.41)	6010C	1	CEV	02/21/23 11:20	2.14	100	DB32002

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston and Sampson Engineers, Inc.

Client Project ID: Claxton Field Client Sample ID: B-203 - 0-1 Date Sampled: 02/16/23 13:30

Percent Solids: 68 Initial Volume: 19.3g Final Volume: 1ml

Extraction Method: 3546

ESS Laboratory Work Order: 23B0634 ESS Laboratory Sample ID: 23B0634-06

Sample Matrix: Soil Units: mg/kg dry Analyst: TJ

Prepared: 2/21/23 12:35

8270D Polynuclear Aromatic Hydrocarbons

<u>Analyte</u>	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
2-Methylnaphthalene	ND (0.378)	·	8270D		1	02/21/23 23:21	D3B0372	DB32111
Acenaphthene	ND (0.378)		8270D		1	02/21/23 23:21	D3B0372	DB32111
Acenaphthylene	ND (0.378)		8270D		1	02/21/23 23:21	D3B0372	DB32111
Anthracene	ND (0.378)		8270D		1	02/21/23 23:21	D3B0372	DB32111
Benzo(a)anthracene	ND (0.378)		8270D		1	02/21/23 23:21	D3B0372	DB32111
Benzo(a)pyrene	ND (0.378)		8270D		1	02/21/23 23:21	D3B0372	DB32111
Benzo(b)fluoranthene	ND (0.378)		8270D		1	02/21/23 23:21	D3B0372	DB32111
Benzo(g,h,i)perylene	ND (0.378)		8270D		1	02/21/23 23:21	D3B0372	DB32111
Benzo(k)fluoranthene	ND (0.378)		8270D		1	02/21/23 23:21	D3B0372	DB32111
Chrysene	ND (0.378)		8270D		1	02/21/23 23:21	D3B0372	DB32111
Dibenzo(a,h)Anthracene	ND (0.378)		8270D		1	02/21/23 23:21	D3B0372	DB32111
Fluoranthene	ND (0.378)		8270D		1	02/21/23 23:21	D3B0372	DB32111
Fluorene	ND (0.378)		8270D		1	02/21/23 23:21	D3B0372	DB32111
Indeno(1,2,3-cd)Pyrene	ND (0.378)		8270D		1	02/21/23 23:21	D3B0372	DB32111
Naphthalene	ND (0.378)		8270D		1	02/21/23 23:21	D3B0372	DB32111
Phenanthrene	ND (0.378)		8270D		1	02/21/23 23:21	D3B0372	DB32111
Pyrene	ND (0.378)		8270D		1	02/21/23 23:21	D3B0372	DB32111
	9%	Recovery	Qualifier	Limits				

Surrogate: 1,2-Dichlorobenzene-d4	74 %	30-130
Surrogate: 2-Fluorobiphenyl	78 %	30-130
Surrogate: Nitrobenzene-d5	79 %	30-130
Surrogate: p-Terphenyl-d14	88 %	30-130

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston and Sampson Engineers, Inc.

Client Project ID: Claxton Field Client Sample ID: B-203 - 0-1 Date Sampled: 02/16/23 13:30 ESS Laboratory Work Order: 23B0634 ESS Laboratory Sample ID: 23B0634-06

Sample Matrix: Soil

Subcontracted Analysis

 Analyte Asbestos
 Results (MRL) See Attached (N/A)
 MDL Method
 Limit Limit Limit
 DF Analyst Analyzed
 Units Batch

 Dioxin
 See Attached (N/A)

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston and Sampson Engineers, Inc.

Client Project ID: Claxton Field Client Sample ID: B-203 - 2-4 Date Sampled: 02/16/23 13:30

Percent Solids: 79

ESS Laboratory Work Order: 23B0634 ESS Laboratory Sample ID: 23B0634-07

Sample Matrix: Soil Units: mg/kg dry

Extraction Method: 3050B

Total Metals

<u>Analyte</u>	Results (MRL)	MDL Method	<u>Limit</u>	<u>DF</u>	Analyst		<u>I/V</u>	<u>F/V</u>	Batch
Antimony	ND (6.18)	6010C		1	CEV	02/21/23 11:22	2.05	100	DB32002
Arsenic	7.17 (3.09)	6010C		1	CEV	02/21/23 11:22	2.05	100	DB32002
Barium	167 (3.09)	6010C		1	CEV	02/21/23 11:22	2.05	100	DB32002
Beryllium	0.33 (0.14)	6010C		1	CEV	02/21/23 11:22	2.05	100	DB32002
Cadmium	1.27 (0.62)	6010C		1	CEV	02/21/23 11:22	2.05	100	DB32002
Chromium	22.2 (1.24)	6010C		1	CEV	02/21/23 11:22	2.05	100	DB32002
Lead	319 (6.18)	6010C		1	CEV	02/21/23 11:22	2.05	100	DB32002
Mercury	0.193 (0.036)	7471B		1	YIV	02/23/23 10:58	0.69	40	DB32003
Nickel	13.2 (3.09)	6010C		1	CEV	02/21/23 11:22	2.05	100	DB32002
Selenium	ND (6.18)	6010C		1	CEV	02/21/23 11:22	2.05	100	DB32002
Silver	ND (0.62)	6010C		1	CEV	02/21/23 11:22	2.05	100	DB32002
Thallium	ND (6.18)	6010C		1	CEV	02/21/23 11:22	2.05	100	DB32002
Vanadium	21.9 (1.24)	6010C		1	CEV	02/21/23 11:22	2.05	100	DB32002
Zinc	443 (3.09)	6010C		1	CEV	02/21/23 11:22	2.05	100	DB32002

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston and Sampson Engineers, Inc.

Client Project ID: Claxton Field Client Sample ID: B-203 - 2-4 Date Sampled: 02/16/23 13:30

Percent Solids: 79 Initial Volume: 19.1g Final Volume: 1ml Extraction Method: 3546 ESS Laboratory Work Order: 23B0634 ESS Laboratory Sample ID: 23B0634-07

Sample Matrix: Soil Units: mg/kg dry Analyst: TJ

Prepared: 2/21/23 12:35

8270D Polynuclear Aromatic Hydrocarbons

Analyte	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
2-Methylnaphthalene	ND (0.332)		8270D		1	02/21/23 23:52	D3B0372	DB32111
Acenaphthene	ND (0.332)		8270D		1	02/21/23 23:52	D3B0372	DB32111
Acenaphthylene	ND (0.332)		8270D		1	02/21/23 23:52	D3B0372	DB32111
Anthracene	ND (0.332)		8270D		1	02/21/23 23:52	D3B0372	DB32111
Benzo(a)anthracene	0.457 (0.332)		8270D		1	02/21/23 23:52	D3B0372	DB32111
Benzo(a)pyrene	0.472 (0.332)		8270D		1	02/21/23 23:52	D3B0372	DB32111
Benzo(b)fluoranthene	0.417 (0.332)		8270D		1	02/21/23 23:52	D3B0372	DB32111
Benzo(g,h,i)perylene	ND (0.332)		8270D		1	02/21/23 23:52	D3B0372	DB32111
Benzo(k)fluoranthene	0.378 (0.332)		8270D		1	02/21/23 23:52	D3B0372	DB32111
Chrysene	0.539 (0.332)		8270D		1	02/21/23 23:52	D3B0372	DB32111
Dibenzo(a,h)Anthracene	ND (0.332)		8270D		1	02/21/23 23:52	D3B0372	DB32111
Fluoranthene	0.900 (0.332)		8270D		1	02/21/23 23:52	D3B0372	DB32111
Fluorene	ND (0.332)		8270D		1	02/21/23 23:52	D3B0372	DB32111
Indeno(1,2,3-cd)Pyrene	ND (0.332)		8270D		1	02/21/23 23:52	D3B0372	DB32111
Naphthalene	ND (0.332)		8270D		1	02/21/23 23:52	D3B0372	DB32111
Phenanthrene	0.546 (0.332)		8270D		1	02/21/23 23:52	D3B0372	DB32111
Pyrene	0.752 (0.332)		8270D		1	02/21/23 23:52	D3B0372	DB32111

Qualifier

Limits

Surrogate: 1,2-Dichlorobenzene-d4	78 %	30-130
Surrogate: 2-Fluorobiphenyl	83 %	30-130
Surrogate: Nitrobenzene-d5	79 %	30-130
Surrogate: p-Terphenyl-d14	<i>85</i> %	30-130

%Recovery

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston and Sampson Engineers, Inc.

Client Project ID: Claxton Field Client Sample ID: B-203 - 2-4 Date Sampled: 02/16/23 13:30 ESS Laboratory Work Order: 23B0634 ESS Laboratory Sample ID: 23B0634-07

Sample Matrix: Soil

Subcontracted Analysis

 Analyte Asbestos
 Results (MRL) See Attached (N/A)
 MDL Method
 Limit Limit Limit DF
 Analyst Analyzed
 Units Batch

 Dioxin
 See Attached (N/A)

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

◆ Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston and Sampson Engineers, Inc.

Client Project ID: Claxton Field Client Sample ID: B-203 - 4-6 Date Sampled: 02/16/23 13:30

Percent Solids: 77

ESS Laboratory Work Order: 23B0634 ESS Laboratory Sample ID: 23B0634-08

Sample Matrix: Soil Units: mg/kg dry

Extraction Method: 3050B

Total Metals

Analyte Antimony	Results (MRL) 11.9 (1.26)	MDL Method 6020A	<u>Limit</u>	<u>DF</u>	Analyst BJV	Analyzed 02/23/23 17:13	<u>I/V</u> 2.05	<u>F/V</u> 100	Batch DB32002
Arsenic	10.9 (3.16)	6010C		1	CEV	02/21/23 11:24	2.05	100	DB32002
Barium	155 (3.16)	6010C		1	CEV	02/21/23 11:24	2.05	100	DB32002
Beryllium	0.63 (0.14)	6010C		1	CEV	02/21/23 11:24	2.05	100	DB32002
Cadmium	ND (0.63)	6010C		1	CEV	02/21/23 11:24	2.05	100	DB32002
Chromium	8.12 (1.26)	6010C		1	CEV	02/21/23 11:24	2.05	100	DB32002
Lead	147 (6.31)	6010C		1	CEV	02/21/23 11:24	2.05	100	DB32002
Mercury	0.370 (0.043)	7471B		1	YIV	02/23/23 11:00	0.6	40	DB32003
Nickel	18.2 (3.16)	6010C		1	CEV	02/21/23 11:24	2.05	100	DB32002
Selenium	ND (6.31)	6010C		1	CEV	02/21/23 11:24	2.05	100	DB32002
Silver	ND (0.63)	6010C		1	CEV	02/21/23 11:24	2.05	100	DB32002
Thallium	ND (6.31)	6010C		1	CEV	02/21/23 11:24	2.05	100	DB32002
Vanadium	24.7 (1.26)	6010C		1	CEV	02/21/23 11:24	2.05	100	DB32002
Zinc	613 (3.16)	6010C		1	CEV	02/21/23 11:24	2.05	100	DB32002

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston and Sampson Engineers, Inc.

Client Project ID: Claxton Field Client Sample ID: B-203 - 4-6 Date Sampled: 02/16/23 13:30

Percent Solids: 77 Initial Volume: 19.6g Final Volume: 1ml Extraction Method: 3546 ESS Laboratory Work Order: 23B0634 ESS Laboratory Sample ID: 23B0634-08 Sample Matrix: Soil

Sample Matrix: Soil Units: mg/kg dry Analyst: TJ

Prepared: 2/21/23 12:35

8270D Polynuclear Aromatic Hydrocarbons

<u>Analyte</u>	Results (MRL)	MDL Method L	<u>imit</u> <u>DF</u>	Analyzed	Sequence	Batch
2-Methylnaphthalene	ND (0.330)	8270D	1	02/22/23 0:22	D3B0372	DB32111
Acenaphthene	ND (0.330)	8270D	1	02/22/23 0:22	D3B0372	DB32111
Acenaphthylene	ND (0.330)	8270D	1	02/22/23 0:22	D3B0372	DB32111
Anthracene	ND (0.330)	8270D	1	02/22/23 0:22	D3B0372	DB32111
Benzo(a)anthracene	0.856 (0.330)	8270D	1	02/22/23 0:22	D3B0372	DB32111
Benzo(a)pyrene	0.911 (0.330)	8270D	1	02/22/23 0:22	D3B0372	DB32111
Benzo(b)fluoranthene	0.788 (0.330)	8270D	1	02/22/23 0:22	D3B0372	DB32111
Benzo(g,h,i)perylene	0.514 (0.330)	8270D	1	02/22/23 0:22	D3B0372	DB32111
Benzo(k)fluoranthene	0.729 (0.330)	8270D	1	02/22/23 0:22	D3B0372	DB32111
Chrysene	0.961 (0.330)	8270D	1	02/22/23 0:22	D3B0372	DB32111
Dibenzo(a,h)Anthracene	ND (0.330)	8270D	1	02/22/23 0:22	D3B0372	DB32111
Fluoranthene	1.59 (0.330)	8270D	1	02/22/23 0:22	D3B0372	DB32111
Fluorene	ND (0.330)	8270D	1	02/22/23 0:22	D3B0372	DB32111
Indeno(1,2,3-cd)Pyrene	0.580 (0.330)	8270D	1	02/22/23 0:22	D3B0372	DB32111
Naphthalene	ND (0.330)	8270D	1	02/22/23 0:22	D3B0372	DB32111
Phenanthrene	0.645 (0.330)	8270D	1	02/22/23 0:22	D3B0372	DB32111
Pyrene	1.30 (0.330)	8270D	1	02/22/23 0:22	D3B0372	DB32111

Qualifier

Limits

Surrogate: 1,2-Dichlorobenzene-d4	76 %	30-130
Surrogate: 2-Fluorobiphenyl	81 %	30-130
Surrogate: Nitrobenzene-d5	78 %	30-130
Surrogate: p-Terphenyl-d14	83 %	30-130

%Recovery

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Dependability

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston and Sampson Engineers, Inc.

Client Project ID: Claxton Field Client Sample ID: B-203 - 4-6 Date Sampled: 02/16/23 13:30

ESS Laboratory Work Order: 23B0634 ESS Laboratory Sample ID: 23B0634-08

Sample Matrix: Soil

Subcontracted Analysis

Analyte Results (MRL) **MDL** Method **Limit** Analyst Analyzed **Units Batch** DF Asbestos See Attached (N/A) Dioxin See Attached (N/A)

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston and Sampson Engineers, Inc.

Client Project ID: Claxton Field Client Sample ID: B-204 - 0-1 Date Sampled: 02/16/23 12:00

Percent Solids: 81

ESS Laboratory Work Order: 23B0634 ESS Laboratory Sample ID: 23B0634-09

Sample Matrix: Soil Units: mg/kg dry

Extraction Method: 3050B

Total Metals

Analyte	Results (MRL)	MDL M	<u>lethod</u>	<u>Limit</u>	<u>DF</u>	Analyst	Analyzed	I/V	F/V	Batch
Antimony	ND (5.79)	6	010C		1	CEV	02/21/23 11:26	2.13	100	DB32002
Arsenic	ND (2.89)	6	010C		1	CEV	02/21/23 11:26	2.13	100	DB32002
Barium	31.8 (2.89)	6	010C		1	CEV	02/21/23 11:26	2.13	100	DB32002
Beryllium	0.32 (0.13)	6	010C		1	CEV	02/21/23 11:26	2.13	100	DB32002
Cadmium	ND (0.58)	6	010C		1	CEV	02/21/23 11:26	2.13	100	DB32002
Chromium	14.1 (1.16)	6	010C		1	CEV	02/21/23 11:26	2.13	100	DB32002
Lead	14.6 (5.79)	6	010C		1	CEV	02/21/23 11:26	2.13	100	DB32002
Mercury	0.061 (0.035)	7	471B		1	YIV	02/23/23 11:02	0.69	40	DB32003
Nickel	9.64 (2.89)	6	010C		1	CEV	02/21/23 11:26	2.13	100	DB32002
Selenium	ND (5.79)	6	010C		1	CEV	02/21/23 11:26	2.13	100	DB32002
Silver	ND (0.58)	6	010C		1	CEV	02/21/23 11:26	2.13	100	DB32002
Thallium	ND (5.79)	6	010C		1	CEV	02/21/23 11:26	2.13	100	DB32002
Vanadium	25.3 (1.16)	6	010C		1	CEV	02/21/23 11:26	2.13	100	DB32002
Zinc	32.7 (2.89)	6	010C		1	CEV	02/21/23 11:26	2.13	100	DB32002

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

Service

The Microbiology Division of Thielsch Engineering, Inc.

ESS Laboratory Work Order: 23B0634

ESS Laboratory Sample ID: 23B0634-09

CERTIFICATE OF ANALYSIS

Client Name: Weston and Sampson Engineers, Inc.

Client Project ID: Claxton Field Client Sample ID: B-204 - 0-1 Date Sampled: 02/16/23 12:00

Percent Solids: 81 Initial Volume: 20.9g Final Volume: 1ml Extraction Method: 3546

: B-204 - 0-1

Sample Matrix: Soil Units: mg/kg dry Analyst: TJ

Prepared: 2/21/23 12:35

8270D Polynuclear Aromatic Hydrocarbons

<u>Analyte</u>	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
2-Methylnaphthalene	ND (0.295)		8270D		1	02/22/23 0:52	D3B0372	DB32111
Acenaphthene	ND (0.295)		8270D		1	02/22/23 0:52	D3B0372	DB32111
Acenaphthylene	ND (0.295)		8270D		1	02/22/23 0:52	D3B0372	DB32111
Anthracene	ND (0.295)		8270D		1	02/22/23 0:52	D3B0372	DB32111
Benzo(a)anthracene	ND (0.295)		8270D		1	02/22/23 0:52	D3B0372	DB32111
Benzo(a)pyrene	ND (0.295)		8270D		1	02/22/23 0:52	D3B0372	DB32111
Benzo(b)fluoranthene	ND (0.295)		8270D		1	02/22/23 0:52	D3B0372	DB32111
Benzo(g,h,i)perylene	ND (0.295)		8270D		1	02/22/23 0:52	D3B0372	DB32111
Benzo(k)fluoranthene	ND (0.295)		8270D		1	02/22/23 0:52	D3B0372	DB32111
Chrysene	ND (0.295)		8270D		1	02/22/23 0:52	D3B0372	DB32111
Dibenzo(a,h)Anthracene	ND (0.295)		8270D		1	02/22/23 0:52	D3B0372	DB32111
Fluoranthene	ND (0.295)		8270D		1	02/22/23 0:52	D3B0372	DB32111
Fluorene	ND (0.295)		8270D		1	02/22/23 0:52	D3B0372	DB32111
Indeno(1,2,3-cd)Pyrene	ND (0.295)		8270D		1	02/22/23 0:52	D3B0372	DB32111
Naphthalene	ND (0.295)		8270D		1	02/22/23 0:52	D3B0372	DB32111
Phenanthrene	ND (0.295)		8270D		1	02/22/23 0:52	D3B0372	DB32111
Pyrene	ND (0.295)		8270D		1	02/22/23 0:52	D3B0372	DB32111
	9	%Recovery	Qualifier	Limits				

Surrogate: 1,2-Dichlorobenzene-d4	74 %	30-130
Surrogate: 2-Fluorobiphenyl	78 %	30-130
Surrogate: Nitrobenzene-d5	76 %	30-130
Surrogate: p-Terphenyl-d14	87 %	30-130

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston and Sampson Engineers, Inc.

Client Project ID: Claxton Field Client Sample ID: B-204 - 0-1 Date Sampled: 02/16/23 12:00 ESS Laboratory Work Order: 23B0634 ESS Laboratory Sample ID: 23B0634-09

Sample Matrix: Soil

Subcontracted Analysis

 Analyte Asbestos
 Results (MRL) See Attached (N/A)
 MDL Method
 Limit Limit Limit
 DF Analyst Analyzed
 Units Batch

 Dioxin
 See Attached (N/A)

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston and Sampson Engineers, Inc.

Client Project ID: Claxton Field Client Sample ID: B-204 - 2-4 Date Sampled: 02/16/23 12:00

Percent Solids: 96

ESS Laboratory Work Order: 23B0634 ESS Laboratory Sample ID: 23B0634-10

Sample Matrix: Soil Units: mg/kg dry

Extraction Method: 3050B

Total Metals

Analyte	Results (MRL)	MDL Method	<u>Limit</u>	<u>DF</u>	Analyst		<u>I/V</u>	F/V	Batch
Antimony	ND (4.89)	6010C		1	CEV	02/21/23 11:28	2.14	100	DB32002
Arsenic	ND (2.45)	6010C		1	CEV	02/21/23 11:28	2.14	100	DB32002
Barium	23.7 (2.45)	6010C		1	CEV	02/21/23 11:28	2.14	100	DB32002
Beryllium	0.18 (0.11)	6010C		1	CEV	02/21/23 11:28	2.14	100	DB32002
Cadmium	ND (0.49)	6010C		1	CEV	02/21/23 11:28	2.14	100	DB32002
Chromium	14.0 (0.98)	6010C		1	CEV	02/21/23 11:28	2.14	100	DB32002
Lead	19.1 (4.89)	6010C		1	CEV	02/21/23 11:28	2.14	100	DB32002
Mercury	0.091 (0.030)	7471B		1	YIV	02/23/23 11:04	0.69	40	DB32003
Nickel	7.33 (2.45)	6010C		1	CEV	02/21/23 11:28	2.14	100	DB32002
Selenium	ND (4.89)	6010C		1	CEV	02/21/23 11:28	2.14	100	DB32002
Silver	ND (0.49)	6010C		1	CEV	02/21/23 11:28	2.14	100	DB32002
Thallium	ND (4.89)	6010C		1	CEV	02/21/23 11:28	2.14	100	DB32002
Vanadium	17.4 (0.98)	6010C		1	CEV	02/21/23 11:28	2.14	100	DB32002
Zinc	35.5 (2.45)	6010C		1	CEV	02/21/23 11:28	2.14	100	DB32002

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston and Sampson Engineers, Inc.

Client Project ID: Claxton Field Client Sample ID: B-204 - 2-4 Date Sampled: 02/16/23 12:00

Percent Solids: 96 Initial Volume: 20.5g Final Volume: 1ml

Extraction Method: 3546

ESS Laboratory Work Order: 23B0634 ESS Laboratory Sample ID: 23B0634-10

Sample Matrix: Soil Units: mg/kg dry Analyst: TJ

Prepared: 2/21/23 12:35

8270D Polynuclear Aromatic Hydrocarbons

Analyte	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyzed	<u>Sequence</u>	Batch
2-Methylnaphthalene	ND (0.255)		8270D		1	02/22/23 1:2	2 D3B0372	DB32111
Acenaphthene	ND (0.255)		8270D		1	02/22/23 1:2	2 D3B0372	DB32111
Acenaphthylene	1.56 (0.255)		8270D		1	02/22/23 1:2	2 D3B0372	DB32111
Anthracene	0.601 (0.255)		8270D		1	02/22/23 1:2	2 D3B0372	DB32111
Benzo(a)anthracene	2.29 (0.255)		8270D		1	02/22/23 1:2	2 D3B0372	DB32111
Benzo(a)pyrene	2.99 (0.255)		8270D		1	02/22/23 1:2	2 D3B0372	DB32111
Benzo(b)fluoranthene	1.96 (0.255)		8270D		1	02/22/23 1:2	2 D3B0372	DB32111
Benzo(g,h,i)perylene	1.77 (0.255)		8270D		1	02/22/23 1:2	2 D3B0372	DB32111
Benzo(k)fluoranthene	1.99 (0.255)		8270D		1	02/22/23 1:2	2 D3B0372	DB32111
Chrysene	3.55 (0.255)		8270D		1	02/22/23 1:2	2 D3B0372	DB32111
Dibenzo(a,h)Anthracene	0.447 (0.255)		8270D		1	02/22/23 1:2	2 D3B0372	DB32111
Fluoranthene	2.89 (0.255)		8270D		1	02/22/23 1:2	2 D3B0372	DB32111
Fluorene	ND (0.255)		8270D		1	02/22/23 1:2	2 D3B0372	DB32111
Indeno(1,2,3-cd)Pyrene	1.70 (0.255)		8270D		1	02/22/23 1:2	2 D3B0372	DB32111
Naphthalene	ND (0.255)		8270D		1	02/22/23 1:2	2 D3B0372	DB32111
Phenanthrene	1.77 (0.255)		8270D		1	02/22/23 1:2	2 D3B0372	DB32111
Pyrene	5.05 (0.255)		8270D		1	02/22/23 1:2	2 D3B0372	DB32111

Qualifier

	,	•
Surrogate: 1,2-Dichlorobenzene-d4	75 %	30-130
Surrogate: 2-Fluorobiphenyl	81 %	30-130
Surrogate: Nitrobenzene-d5	80 %	30-130
Surrogate: p-Terphenyl-d14	<i>85</i> %	30-130

%Recovery

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Quality

Dependability

Fax: 401-461-4486

Limits

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston and Sampson Engineers, Inc.

Client Project ID: Claxton Field Client Sample ID: B-204 - 2-4 Date Sampled: 02/16/23 12:00 ESS Laboratory Work Order: 23B0634 ESS Laboratory Sample ID: 23B0634-10

Sample Matrix: Soil

Subcontracted Analysis

 Analyte Asbestos
 Results (MRL) See Attached (N/A)
 MDL Method
 Limit Limit Limit DF
 Analyst Analyzed
 Units Batch

 Dioxin
 See Attached (N/A)

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston and Sampson Engineers, Inc.

Client Project ID: Claxton Field Client Sample ID: B-204 - 4-6 Date Sampled: 02/16/23 12:00

Percent Solids: 78

ESS Laboratory Work Order: 23B0634 ESS Laboratory Sample ID: 23B0634-11

Sample Matrix: Soil Units: mg/kg dry

Extraction Method: 3050B

Total Metals

Analyte Antimony	Results (MRL) 14.7 (1.15)	MDL	Method 6020A	<u>Limit</u>	<u>DF</u>	Analyst BJV	Analyzed 02/23/23 17:18	<u>I/V</u> 2.24	$\frac{\mathbf{F/V}}{100}$	Batch DB32002
Arsenic	8.31 (2.88)		6010C		1	CEV	02/21/23 11:38		100	DB32002
Barium	336 (2.88)		6010C		1	CEV	02/21/23 11:38	2.24	100	DB32002
Beryllium	ND (0.13)		6010C		1	CEV	02/21/23 11:38	2.24	100	DB32002
Cadmium	3.05 (0.58)		6010C		1	CEV	02/21/23 11:38	2.24	100	DB32002
Chromium	88.3 (11.5)		6010C		10	CEV	02/22/23 16:23	2.24	100	DB32002
Lead	4650 (57.6)		6010C		10	CEV	02/22/23 16:23	2.24	100	DB32002
Mercury	0.145 (0.039)		7471B		1	YIV	02/23/23 11:18	0.65	40	DB32003
Nickel	68.7 (2.88)		6010C		1	CEV	02/21/23 11:38	2.24	100	DB32002
Selenium	ND (1.15)		6020A		1	BJV	02/23/23 17:18	2.24	100	DB32002
Silver	EL ND (5.76)		6010C		10	CEV	02/22/23 16:23	2.24	100	DB32002
Thallium	ND (5.76)		6010C		1	CEV	02/21/23 11:38	2.24	100	DB32002
Vanadium	23.8 (1.15)		6010C		1	CEV	02/21/23 11:38	2.24	100	DB32002
Zinc	1120 (2.88)		6010C		1	CEV	02/21/23 11:38	2.24	100	DB32002

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston and Sampson Engineers, Inc.

Client Project ID: Claxton Field Client Sample ID: B-204 - 4-6 Date Sampled: 02/16/23 12:00

Percent Solids: 78 Final Volume: 1ml Extraction Method: 3546

Initial Volume: 20.2g

ESS Laboratory Work Order: 23B0634 ESS Laboratory Sample ID: 23B0634-11

Sample Matrix: Soil Units: mg/kg dry Analyst: TJ

Prepared: 2/21/23 12:35

8270D Polynuclear Aromatic Hydrocarbons

<u>Analyte</u>	Results (MRL)	MDL	Method	<u>Limit</u>	$\overline{\mathbf{DF}}$	<u>Analyzed</u>	Sequence	Batch
2-Methylnaphthalene	ND (0.319)		8270D		1	02/22/23 1:52	D3B0372	DB32111
Acenaphthene	ND (0.319)		8270D		1	02/22/23 1:52	D3B0372	DB32111
Acenaphthylene	ND (0.319)		8270D		1	02/22/23 1:52	D3B0372	DB32111
Anthracene	ND (0.319)		8270D		1	02/22/23 1:52	D3B0372	DB32111
Benzo(a)anthracene	ND (0.319)		8270D		1	02/22/23 1:52	D3B0372	DB32111
Benzo(a)pyrene	ND (0.319)		8270D		1	02/22/23 1:52	D3B0372	DB32111
Benzo(b)fluoranthene	ND (0.319)		8270D		1	02/22/23 1:52	D3B0372	DB32111
Benzo(g,h,i)perylene	ND (0.319)		8270D		1	02/22/23 1:52	D3B0372	DB32111
Benzo(k)fluoranthene	ND (0.319)		8270D		1	02/22/23 1:52	D3B0372	DB32111
Chrysene	ND (0.319)		8270D		1	02/22/23 1:52	D3B0372	DB32111
Dibenzo(a,h)Anthracene	ND (0.319)		8270D		1	02/22/23 1:52	D3B0372	DB32111
Fluoranthene	ND (0.319)		8270D		1	02/22/23 1:52	D3B0372	DB32111
Fluorene	ND (0.319)		8270D		1	02/22/23 1:52	D3B0372	DB32111
Indeno(1,2,3-cd)Pyrene	ND (0.319)		8270D		1	02/22/23 1:52	D3B0372	DB32111
Naphthalene	ND (0.319)		8270D		1	02/22/23 1:52	D3B0372	DB32111
Phenanthrene	ND (0.319)		8270D		1	02/22/23 1:52	D3B0372	DB32111
Pyrene	ND (0.319)		8270D		1	02/22/23 1:52	D3B0372	DB32111
	9	%Recovery	Qualifier	Limits				

Surrogate: 1,2-Dichlorobenzene-d4 83 % 30-130 Surrogate: 2-Fluorobiphenyl 86 % 30-130 Surrogate: Nitrobenzene-d5 84 % 30-130 Surrogate: p-Terphenyl-d14 30-130 85 %

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston and Sampson Engineers, Inc.

Client Project ID: Claxton Field Client Sample ID: B-204 - 4-6 Date Sampled: 02/16/23 12:00 ESS Laboratory Work Order: 23B0634 ESS Laboratory Sample ID: 23B0634-11

Sample Matrix: Soil

Subcontracted Analysis

 Analyte Asbestos
 Results (MRL) See Attached (N/A)
 MDL Method
 Limit Limit Limit DF
 Analyst Analyzed
 Units Batch

 Dioxin
 See Attached (N/A)

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston and Sampson Engineers, Inc.

Client Project ID: Claxton Field Client Sample ID: B-205 - 0-1 Date Sampled: 02/16/23 14:30

Percent Solids: 87

ESS Laboratory Work Order: 23B0634 ESS Laboratory Sample ID: 23B0634-12

Sample Matrix: Soil Units: mg/kg dry

Extraction Method: 3050B

Total Metals

Analyte	Results (MRL)	MDL	Method	<u>Limit</u>	DF	Analyst	Analyzed	I/V	F/V	Batch
Antimony	ND (5.61)		6010C		1	CEV	02/21/23 11:46	2.06	100	DB32002
Arsenic	ND (2.81)		6010C		1	CEV	02/21/23 11:46	2.06	100	DB32002
Barium	23.7 (2.81)		6010C		1	CEV	02/21/23 11:46	2.06	100	DB32002
Beryllium	0.25 (0.12)		6010C		1	CEV	02/21/23 11:46	2.06	100	DB32002
Cadmium	ND (0.56)		6010C		1	CEV	02/21/23 11:46	2.06	100	DB32002
Chromium	14.5 (1.12)		6010C		1	CEV	02/21/23 11:46	2.06	100	DB32002
Lead	22.1 (5.61)		6010C		1	CEV	02/21/23 11:46	2.06	100	DB32002
Mercury	0.065 (0.035)		7471B		1	YIV	02/23/23 11:20	0.66	40	DB32003
Nickel	8.15 (2.81)		6010C		1	CEV	02/21/23 11:46	2.06	100	DB32002
Selenium	ND (5.61)		6010C		1	CEV	02/21/23 11:46	2.06	100	DB32002
Silver	ND (0.56)		6010C		1	CEV	02/21/23 11:46	2.06	100	DB32002
Thallium	ND (5.61)		6010C		1	CEV	02/21/23 11:46	2.06	100	DB32002
Vanadium	18.7 (1.12)		6010C		1	CEV	02/21/23 11:46	2.06	100	DB32002
Zinc	29.2 (2.81)		6010C		1	CEV	02/21/23 11:46	2.06	100	DB32002

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston and Sampson Engineers, Inc.

Client Project ID: Claxton Field Client Sample ID: B-205 - 0-1 Date Sampled: 02/16/23 14:30

Percent Solids: 87 Initial Volume: 19.6g Final Volume: 1ml

Extraction Method: 3546

ESS Laboratory Work Order: 23B0634 ESS Laboratory Sample ID: 23B0634-12

Sample Matrix: Soil Units: mg/kg dry Analyst: TJ

Prepared: 2/21/23 12:35

8270D Polynuclear Aromatic Hydrocarbons

Analyte	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
2-Methylnaphthalene	ND (0.295)		8270D		1	02/22/23 2:22	D3B0372	DB32111
Acenaphthene	ND (0.295)		8270D		1	02/22/23 2:22	D3B0372	DB32111
Acenaphthylene	ND (0.295)		8270D		1	02/22/23 2:22	D3B0372	DB32111
Anthracene	ND (0.295)		8270D		1	02/22/23 2:22	D3B0372	DB32111
Benzo(a)anthracene	ND (0.295)		8270D		1	02/22/23 2:22	D3B0372	DB32111
Benzo(a)pyrene	ND (0.295)		8270D		1	02/22/23 2:22	D3B0372	DB32111
Benzo(b)fluoranthene	ND (0.295)		8270D		1	02/22/23 2:22	D3B0372	DB32111
Benzo(g,h,i)perylene	ND (0.295)		8270D		1	02/22/23 2:22	D3B0372	DB32111
Benzo(k)fluoranthene	ND (0.295)		8270D		1	02/22/23 2:22	D3B0372	DB32111
Chrysene	ND (0.295)		8270D		1	02/22/23 2:22	D3B0372	DB32111
Dibenzo(a,h)Anthracene	ND (0.295)		8270D		1	02/22/23 2:22	D3B0372	DB32111
Fluoranthene	ND (0.295)		8270D		1	02/22/23 2:22	D3B0372	DB32111
Fluorene	ND (0.295)		8270D		1	02/22/23 2:22	D3B0372	DB32111
Indeno(1,2,3-cd)Pyrene	ND (0.295)		8270D		1	02/22/23 2:22	D3B0372	DB32111
Naphthalene	ND (0.295)		8270D		1	02/22/23 2:22	D3B0372	DB32111
Phenanthrene	ND (0.295)		8270D		1	02/22/23 2:22	D3B0372	DB32111
Pyrene	ND (0.295)		8270D		1	02/22/23 2:22	D3B0372	DB32111
	9	6Recovery	Qualifier	Limits				

Surrogate: 1,2-Dichlorobenzene-d4	74 %	30-130
Surrogate: 2-Fluorobiphenyl	79 %	30-130
Surrogate: Nitrobenzene-d5	75 %	30-130
Surrogate: p-Terphenyl-d14	87 %	30-130

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston and Sampson Engineers, Inc.

Client Project ID: Claxton Field Client Sample ID: B-205 - 0-1 Date Sampled: 02/16/23 14:30 ESS Laboratory Work Order: 23B0634 ESS Laboratory Sample ID: 23B0634-12

Sample Matrix: Soil

Subcontracted Analysis

 Analyte Asbestos
 Results (MRL) See Attached (N/A)
 MDL Method
 Limit Limit Limit DF
 Analyst Analyzed
 Units Batch

 Dioxin
 See Attached (N/A)

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston and Sampson Engineers, Inc.

Client Project ID: Claxton Field Client Sample ID: B-205 - 2-4 Date Sampled: 02/16/23 14:30

Percent Solids: 91

ESS Laboratory Work Order: 23B0634 ESS Laboratory Sample ID: 23B0634-13

Sample Matrix: Soil Units: mg/kg dry

Extraction Method: 3050B

Total Metals

<u>Analyte</u>	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyst		I/V	F/V	Batch
Antimony	ND (5.45)		6010C		1	CEV	02/21/23 11:48	2.01	100	DB32002
Arsenic	3.15 (2.73)		6010C		1	CEV	02/21/23 11:48	2.01	100	DB32002
Barium	47.9 (2.73)		6010C		1	CEV	02/21/23 11:48	2.01	100	DB32002
Beryllium	0.25 (0.12)		6010C		1	CEV	02/21/23 11:48	2.01	100	DB32002
Cadmium	ND (0.55)		6010C		1	CEV	02/21/23 11:48	2.01	100	DB32002
Chromium	14.9 (1.09)		6010C		1	CEV	02/21/23 11:48	2.01	100	DB32002
Lead	50.6 (5.45)		6010C		1	CEV	02/21/23 11:48	2.01	100	DB32002
Mercury	0.409 (0.034)		7471B		1	YIV	02/23/23 11:22	0.64	40	DB32003
Nickel	12.0 (2.73)		6010C		1	CEV	02/21/23 11:48	2.01	100	DB32002
Selenium	ND (5.45)		6010C		1	CEV	02/21/23 11:48	2.01	100	DB32002
Silver	ND (0.55)		6010C		1	CEV	02/21/23 11:48	2.01	100	DB32002
Thallium	ND (5.45)		6010C		1	CEV	02/21/23 11:48	2.01	100	DB32002
Vanadium	35.1 (1.09)		6010C		1	CEV	02/21/23 11:48	2.01	100	DB32002
Zinc	69.0 (2.73)		6010C		1	CEV	02/21/23 11:48	2.01	100	DB32002

The Microbiology Division of Thielsch Engineering, Inc.

ESS Laboratory Work Order: 23B0634

ESS Laboratory Sample ID: 23B0634-13

CERTIFICATE OF ANALYSIS

Client Name: Weston and Sampson Engineers, Inc.

Client Project ID: Claxton Field Client Sample ID: B-205 - 2-4 Date Sampled: 02/16/23 14:30

Percent Solids: 91 Initial Volume: 19.5g Final Volume: 1ml Extraction Method: 3546

5/23 14:30

Prepared: 2/21/23 12:35

Sample Matrix: Soil

Units: mg/kg dry

Analyst: TJ

8270D Polynuclear Aromatic Hydrocarbons

<u>Analyte</u>	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyzed		Batch
2-Methylnaphthalene	ND (0.281)		8270D		1	02/22/23 2:5	2 D3B0372	DB32111
Acenaphthene	ND (0.281)		8270D		1	02/22/23 2:5	2 D3B0372	DB32111
Acenaphthylene	ND (0.281)		8270D		1	02/22/23 2:5	2 D3B0372	DB32111
Anthracene	ND (0.281)		8270D		1	02/22/23 2:5	2 D3B0372	DB32111
Benzo(a)anthracene	ND (0.281)		8270D		1	02/22/23 2:5	2 D3B0372	DB32111
Benzo(a)pyrene	ND (0.281)		8270D		1	02/22/23 2:5	2 D3B0372	DB32111
Benzo(b)fluoranthene	ND (0.281)		8270D		1	02/22/23 2:5	2 D3B0372	DB32111
Benzo(g,h,i)perylene	ND (0.281)		8270D		1	02/22/23 2:5	D3B0372	DB32111
Benzo(k)fluoranthene	ND (0.281)		8270D		1	02/22/23 2:5	2 D3B0372	DB32111
Chrysene	0.318 (0.281)		8270D		1	02/22/23 2:5	2 D3B0372	DB32111
Dibenzo(a,h)Anthracene	ND (0.281)		8270D		1	02/22/23 2:5	2 D3B0372	DB32111
Fluoranthene	ND (0.281)		8270D		1	02/22/23 2:5	2 D3B0372	DB32111
Fluorene	ND (0.281)		8270D		1	02/22/23 2:5	D3B0372	DB32111
Indeno(1,2,3-cd)Pyrene	ND (0.281)		8270D		1	02/22/23 2:5	D3B0372	DB32111
Naphthalene	ND (0.281)		8270D		1	02/22/23 2:5	D3B0372	DB32111
Phenanthrene	ND (0.281)		8270D		1	02/22/23 2:5	2 D3B0372	DB32111
Pyrene	0.360 (0.281)		8270D		1	02/22/23 2:5	D3B0372	DB32111

Qualifier

Limits

	•	
Surrogate: 1,2-Dichlorobenzene-d4	78 %	30-130
Surrogate: 2-Fluorobiphenyl	85 %	30-130
Surrogate: Nitrobenzene-d5	83 %	30-130
Surrogate: p-Terphenyl-d14	91 %	30-130

%Recovery

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston and Sampson Engineers, Inc.

Client Project ID: Claxton Field Client Sample ID: B-205 - 2-4 Date Sampled: 02/16/23 14:30 ESS Laboratory Work Order: 23B0634 ESS Laboratory Sample ID: 23B0634-13

Sample Matrix: Soil

Subcontracted Analysis

 Analyte Asbestos
 Results (MRL) See Attached (N/A)
 MDL Method
 Limit Limit Limit DF
 Analyst Analyzed
 Units Batch

 Dioxin
 See Attached (N/A)

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston and Sampson Engineers, Inc.

Client Project ID: Claxton Field Client Sample ID: B-205 - 4-6 Date Sampled: 02/16/23 14:30

Percent Solids: 76

ESS Laboratory Work Order: 23B0634 ESS Laboratory Sample ID: 23B0634-14

Sample Matrix: Soil Units: mg/kg dry

Extraction Method: 3050B

Total Metals

Analyte	Results (MRL)	MDL Method	<u>Limit</u>	<u>DF</u>	Analyst		<u>I/V</u>	<u>F/V</u>	Batch
Antimony	ND (5.83)	6010C		1	CEV	02/21/23 11:50	2.27	100	DB32002
Arsenic	10.6 (2.92)	6010C		1	CEV	02/21/23 11:50	2.27	100	DB32002
Barium	155 (2.92)	6010C		1	CEV	02/21/23 11:50	2.27	100	DB32002
Beryllium	0.67 (0.13)	6010C		1	CEV	02/21/23 11:50	2.27	100	DB32002
Cadmium	ND (0.58)	6010C		1	CEV	02/21/23 11:50	2.27	100	DB32002
Chromium	10.4 (1.17)	6010C		1	CEV	02/21/23 11:50	2.27	100	DB32002
Lead	1650 (5.83)	6010C		1	CEV	02/21/23 11:50	2.27	100	DB32002
Mercury	0.654 (0.040)	7471B		1	YIV	02/23/23 11:25	0.66	40	DB32003
Nickel	16.8 (2.92)	6010C		1	CEV	02/21/23 11:50	2.27	100	DB32002
Selenium	ND (5.83)	6010C		1	CEV	02/21/23 11:50	2.27	100	DB32002
Silver	ND (0.58)	6010C		1	CEV	02/21/23 11:50	2.27	100	DB32002
Thallium	ND (5.83)	6010C		1	CEV	02/21/23 11:50	2.27	100	DB32002
Vanadium	38.2 (1.17)	6010C		1	CEV	02/21/23 11:50	2.27	100	DB32002
Zinc	329 (2.92)	6010C		1	CEV	02/21/23 11:50	2.27	100	DB32002

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston and Sampson Engineers, Inc.

Client Project ID: Claxton Field Client Sample ID: B-205 - 4-6 Date Sampled: 02/16/23 14:30

Percent Solids: 76 Initial Volume: 19.1g Final Volume: 1ml

Extraction Method: 3546

ESS Laboratory Work Order: 23B0634 ESS Laboratory Sample ID: 23B0634-14

Sample Matrix: Soil Units: mg/kg dry Analyst: TJ

Prepared: 2/21/23 12:35

8270D Polynuclear Aromatic Hydrocarbons

<u>Analyte</u>	Results (MRL)	$\underline{\mathbf{MDL}}$	Method	<u>Limit</u>	<u>DF</u>	<u>Analyzed</u>	Sequence	Batch
2-Methylnaphthalene	ND (0.346)		8270D		1	02/22/23 3:22	D3B0372	DB32111
Acenaphthene	ND (0.346)		8270D		1	02/22/23 3:22	D3B0372	DB32111
Acenaphthylene	ND (0.346)		8270D		1	02/22/23 3:22	D3B0372	DB32111
Anthracene	ND (0.346)		8270D		1	02/22/23 3:22	D3B0372	DB32111
Benzo(a)anthracene	ND (0.346)		8270D		1	02/22/23 3:22	D3B0372	DB32111
Benzo(a)pyrene	ND (0.346)		8270D		1	02/22/23 3:22	D3B0372	DB32111
Benzo(b)fluoranthene	ND (0.346)		8270D		1	02/22/23 3:22	D3B0372	DB32111
Benzo(g,h,i)perylene	ND (0.346)		8270D		1	02/22/23 3:22	D3B0372	DB32111
Benzo(k)fluoranthene	ND (0.346)		8270D		1	02/22/23 3:22	D3B0372	DB32111
Chrysene	ND (0.346)		8270D		1	02/22/23 3:22	D3B0372	DB32111
Dibenzo(a,h)Anthracene	ND (0.346)		8270D		1	02/22/23 3:22	D3B0372	DB32111
Fluoranthene	ND (0.346)		8270D		1	02/22/23 3:22	D3B0372	DB32111
Fluorene	ND (0.346)		8270D		1	02/22/23 3:22	D3B0372	DB32111
Indeno(1,2,3-cd)Pyrene	ND (0.346)		8270D		1	02/22/23 3:22	D3B0372	DB32111
Naphthalene	ND (0.346)		8270D		1	02/22/23 3:22	D3B0372	DB32111
Phenanthrene	ND (0.346)		8270D		1	02/22/23 3:22	D3B0372	DB32111
Pyrene	ND (0.346)		8270D		1	02/22/23 3:22	D3B0372	DB32111
	9	%Recovery	Qualifier	Limits				

Surrogate: 1,2-Dichlorobenzene-d4	78 %	30-130
Surrogate: 2-Fluorobiphenyl	84 %	30-130
Surrogate: Nitrobenzene-d5	82 %	30-130
Surrogate: p-Terphenyl-d14	92 %	30-130

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston and Sampson Engineers, Inc.

Client Project ID: Claxton Field Client Sample ID: B-205 - 4-6 Date Sampled: 02/16/23 14:30 ESS Laboratory Work Order: 23B0634 ESS Laboratory Sample ID: 23B0634-14

Sample Matrix: Soil

Subcontracted Analysis

 Analyte Asbestos
 Results (MRL) See Attached (N/A)
 MDL Method
 Limit Limit Limit DF
 Analyst Analyzed
 Units Batch

 Dioxin
 See Attached (N/A)

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

◆ Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston and Sampson Engineers, Inc.

Client Project ID: Claxton Field Client Sample ID: B-206 - 0-1 Date Sampled: 02/16/23 15:15

Percent Solids: 80

ESS Laboratory Work Order: 23B0634 ESS Laboratory Sample ID: 23B0634-15

Sample Matrix: Soil Units: mg/kg dry

Extraction Method: 3050B

Total Metals

<u>Analyte</u>	Results (MRL)	MDL	Method	Limit	<u>DF</u>	Analyst		<u>I/V</u>	<u>F/V</u>	Batch
Antimony	ND (5.86)		6010C		1	CEV	02/21/23 11:52	2.14	100	DB32002
Arsenic	5.03 (2.93)		6010C		1	CEV	02/21/23 11:52	2.14	100	DB32002
Barium	104 (2.93)		6010C		1	CEV	02/21/23 11:52	2.14	100	DB32002
Beryllium	0.39 (0.13)		6010C		1	CEV	02/21/23 11:52	2.14	100	DB32002
Cadmium	ND (0.59)		6010C		1	CEV	02/21/23 11:52	2.14	100	DB32002
Chromium	17.4 (1.17)		6010C		1	CEV	02/21/23 11:52	2.14	100	DB32002
Lead	330 (5.86)		6010C		1	CEV	02/21/23 11:52	2.14	100	DB32002
Mercury	0.088 (0.036)		7471B		1	YIV	02/23/23 11:27	0.69	40	DB32003
Nickel	16.4 (2.93)		6010C		1	CEV	02/21/23 11:52	2.14	100	DB32002
Selenium	ND (5.86)		6010C		1	CEV	02/21/23 11:52	2.14	100	DB32002
Silver	ND (0.59)		6010C		1	CEV	02/21/23 11:52	2.14	100	DB32002
Thallium	ND (5.86)		6010C		1	CEV	02/21/23 11:52	2.14	100	DB32002
Vanadium	24.3 (1.17)		6010C		1	CEV	02/21/23 11:52	2.14	100	DB32002
Zinc	199 (2.93)		6010C		1	CEV	02/21/23 11:52	2.14	100	DB32002

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston and Sampson Engineers, Inc.

Client Project ID: Claxton Field Client Sample ID: B-206 - 0-1 Date Sampled: 02/16/23 15:15

Percent Solids: 80 Initial Volume: 19.9g Final Volume: 1ml

Extraction Method: 3546

ESS Laboratory Work Order: 23B0634 ESS Laboratory Sample ID: 23B0634-15

Sample Matrix: Soil Units: mg/kg dry Analyst: TJ

Prepared: 2/21/23 12:35

8270D Polynuclear Aromatic Hydrocarbons

<u>Analyte</u>	Results (MRL)	MDL	Method	<u>Limit</u>	$\overline{\mathbf{DF}}$	<u>Analyzed</u>	Sequence	Batch
2-Methylnaphthalene	ND (0.315)		8270D		1	02/22/23 3:52	D3B0372	DB32111
Acenaphthene	ND (0.315)		8270D		1	02/22/23 3:52	D3B0372	DB32111
Acenaphthylene	ND (0.315)		8270D		1	02/22/23 3:52	D3B0372	DB32111
Anthracene	ND (0.315)		8270D		1	02/22/23 3:52	D3B0372	DB32111
Benzo(a)anthracene	ND (0.315)		8270D		1	02/22/23 3:52	D3B0372	DB32111
Benzo(a)pyrene	ND (0.315)		8270D		1	02/22/23 3:52	D3B0372	DB32111
Benzo(b)fluoranthene	ND (0.315)		8270D		1	02/22/23 3:52	D3B0372	DB32111
Benzo(g,h,i)perylene	ND (0.315)		8270D		1	02/22/23 3:52	D3B0372	DB32111
Benzo(k)fluoranthene	ND (0.315)		8270D		1	02/22/23 3:52	D3B0372	DB32111
Chrysene	ND (0.315)		8270D		1	02/22/23 3:52	D3B0372	DB32111
Dibenzo(a,h)Anthracene	ND (0.315)		8270D		1	02/22/23 3:52	D3B0372	DB32111
Fluoranthene	ND (0.315)		8270D		1	02/22/23 3:52	D3B0372	DB32111
Fluorene	ND (0.315)		8270D		1	02/22/23 3:52	D3B0372	DB32111
Indeno(1,2,3-cd)Pyrene	ND (0.315)		8270D		1	02/22/23 3:52	D3B0372	DB32111
Naphthalene	ND (0.315)		8270D		1	02/22/23 3:52	D3B0372	DB32111
Phenanthrene	ND (0.315)		8270D		1	02/22/23 3:52	D3B0372	DB32111
Pyrene	ND (0.315)		8270D		1	02/22/23 3:52	D3B0372	DB32111
	%	6Recovery	Qualifier	Limits				

 Surrogate: 1,2-Dichlorobenzene-d4
 83 %
 30-130

 Surrogate: 2-Fluorobiphenyl
 88 %
 30-130

 Surrogate: Nitrobenzene-d5
 86 %
 30-130

 Surrogate: p-Terphenyl-d14
 92 %
 30-130

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston and Sampson Engineers, Inc.

Client Project ID: Claxton Field Client Sample ID: B-206 - 0-1 Date Sampled: 02/16/23 15:15 ESS Laboratory Work Order: 23B0634 ESS Laboratory Sample ID: 23B0634-15

Sample Matrix: Soil

Subcontracted Analysis

 Analyte Asbestos
 Results (MRL) See Attached (N/A)
 MDL Method
 Limit Limit Limit
 DF Malyst Analyzed
 Analyzed Units
 Batch

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

◆ Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston and Sampson Engineers, Inc.

Client Project ID: Claxton Field Client Sample ID: B-206 - 2-4 Date Sampled: 02/16/23 15:15

Percent Solids: 84

ESS Laboratory Work Order: 23B0634 ESS Laboratory Sample ID: 23B0634-16

Sample Matrix: Soil Units: mg/kg dry

Extraction Method: 3050B

Total Metals

Analyte Antimony	Results (MRL) 6.85 (1.06)	MDL Method 6020A	<u>Limit</u>	<u>DF</u>	Analyst BJV	Analyzed 02/23/23 17:24	<u>I/V</u> 2.24	<u>F/V</u> 100	Batch DB32002
Arsenic	13.9 (2.65)	6010C		1	CEV	02/21/23 11:54	2.24	100	DB32002
Barium	85.9 (2.65)	6010C		1	CEV	02/21/23 11:54	2.24	100	DB32002
Beryllium	0.33 (0.12)	6010C		1	CEV	02/21/23 11:54	2.24	100	DB32002
Cadmium	ND (0.53)	6010C		1	CEV	02/21/23 11:54	2.24	100	DB32002
Chromium	16.0 (2.12)	6010C		2	CEV	02/22/23 16:31	2.24	100	DB32002
Lead	319 (10.6)	6010C		2	CEV	02/22/23 16:31	2.24	100	DB32002
Mercury	0.223 (0.039)	7471B		1	YIV	02/23/23 11:29	0.6	40	DB32003
Nickel	37.4 (2.65)	6010C		1	CEV	02/21/23 11:54	2.24	100	DB32002
Selenium	ND (1.06)	6020A		1	BJV	02/23/23 17:24	2.24	100	DB32002
Silver	EL ND (1.06)	6010C		2	CEV	02/22/23 16:31	2.24	100	DB32002
Thallium	ND (5.30)	6010C		1	CEV	02/21/23 11:54	2.24	100	DB32002
Vanadium	21.5 (1.06)	6010C		1	CEV	02/21/23 11:54	2.24	100	DB32002
Zinc	341 (2.65)	6010C		1	CEV	02/21/23 11:54	2.24	100	DB32002

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston and Sampson Engineers, Inc.

Client Project ID: Claxton Field Client Sample ID: B-206 - 2-4 Date Sampled: 02/16/23 15:15

Percent Solids: 84 Initial Volume: 20.9g Final Volume: 1ml

Extraction Method: 3546

ESS Laboratory Work Order: 23B0634 ESS Laboratory Sample ID: 23B0634-16

Sample Matrix: Soil Units: mg/kg dry Analyst: TJ

Prepared: 2/21/23 12:35

8270D Polynuclear Aromatic Hydrocarbons

<u>Analyte</u>	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
2-Methylnaphthalene	ND (0.284)		8270D		1	02/21/23 23:09	D3B0383	DB32111
Acenaphthene	ND (0.284)		8270D		1	02/21/23 23:09	D3B0383	DB32111
Acenaphthylene	ND (0.284)		8270D		1	02/21/23 23:09	D3B0383	DB32111
Anthracene	ND (0.284)		8270D		1	02/21/23 23:09	D3B0383	DB32111
Benzo(a)anthracene	ND (0.284)		8270D		1	02/21/23 23:09	D3B0383	DB32111
Benzo(a)pyrene	ND (0.284)		8270D		1	02/21/23 23:09	D3B0383	DB32111
Benzo(b)fluoranthene	ND (0.284)		8270D		1	02/21/23 23:09	D3B0383	DB32111
Benzo(g,h,i)perylene	ND (0.284)		8270D		1	02/21/23 23:09	D3B0383	DB32111
Benzo(k)fluoranthene	ND (0.284)		8270D		1	02/21/23 23:09	D3B0383	DB32111
Chrysene	ND (0.284)		8270D		1	02/21/23 23:09	D3B0383	DB32111
Dibenzo(a,h)Anthracene	ND (0.284)		8270D		1	02/21/23 23:09	D3B0383	DB32111
Fluoranthene	ND (0.284)		8270D		1	02/21/23 23:09	D3B0383	DB32111
Fluorene	ND (0.284)		8270D		1	02/21/23 23:09	D3B0383	DB32111
Indeno(1,2,3-cd)Pyrene	ND (0.284)		8270D		1	02/21/23 23:09	D3B0383	DB32111
Naphthalene	ND (0.284)		8270D		1	02/21/23 23:09	D3B0383	DB32111
Phenanthrene	ND (0.284)		8270D		1	02/21/23 23:09	D3B0383	DB32111
Pyrene	ND (0.284)		8270D		1	02/21/23 23:09	D3B0383	DB32111
	Ç	%Recovery	Qualifier	Limits				

Surrogate: 1,2-Dichlorobenzene-d4	83 %	30-130
Surrogate: 2-Fluorobiphenyl	84 %	30-130
Surrogate: Nitrobenzene-d5	79 %	30-130
Surrogate: p-Terphenyl-d14	97 %	30-130

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston and Sampson Engineers, Inc.

Client Project ID: Claxton Field Client Sample ID: B-206 - 2-4 Date Sampled: 02/16/23 15:15 ESS Laboratory Work Order: 23B0634 ESS Laboratory Sample ID: 23B0634-16

Sample Matrix: Soil

Subcontracted Analysis

 Analyte Asbestos
 Results (MRL) See Attached (N/A)
 MDL Method
 Limit Limit Limit
 DF Malyst Analyzed
 Analyzed Units
 Batch

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston and Sampson Engineers, Inc.

Client Project ID: Claxton Field Client Sample ID: B-206 - 4-5 Date Sampled: 02/16/23 15:15

Percent Solids: 91

ESS Laboratory Work Order: 23B0634 ESS Laboratory Sample ID: 23B0634-17

Sample Matrix: Soil Units: mg/kg dry

Extraction Method: 3050B

Total Metals

Analyte Antimony	Results (MRL) ND (4.98)	MDL Method 6010C	<u>Limit</u>	<u>DF</u>	Analyst CEV	Analyzed 02/21/23 11:57	<u>I/V</u> 2.21	$\frac{\mathbf{F/V}}{100}$	Batch DB32002
Arsenic	ND (2.49)	6010C		1	CEV	02/21/23 11:57	2.21	100	DB32002
Barium	57.2 (2.49)	6010C		1	CEV	02/21/23 11:57	2.21	100	DB32002
Beryllium	0.34 (0.11)	6010C		1	CEV	02/21/23 11:57	2.21	100	DB32002
Cadmium	ND (0.50)	6010C		1	CEV	02/21/23 11:57	2.21	100	DB32002
Chromium	12.0 (1.00)	6010C		1	CEV	02/21/23 11:57	2.21	100	DB32002
Lead	EL ND (9.97)	6010C		2	CEV	02/22/23 16:33	2.21	100	DB32002
Mercury	0.034 (0.034)	7471B		1	YIV	02/23/23 11:31	0.64	40	DB32003
Nickel	8.75 (2.49)	6010C		1	CEV	02/21/23 11:57	2.21	100	DB32002
Selenium	ND (4.98)	6010C		1	CEV	02/21/23 11:57	2.21	100	DB32002
Silver	ND (0.50)	6010C		1	CEV	02/21/23 11:57	2.21	100	DB32002
Thallium	ND (4.98)	6010C		1	CEV	02/21/23 11:57	2.21	100	DB32002
Vanadium	21.7 (1.00)	6010C		1	CEV	02/21/23 11:57	2.21	100	DB32002
Zinc	24.9 (2.49)	6010C		1	CEV	02/21/23 11:57	2.21	100	DB32002

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston and Sampson Engineers, Inc.

Client Project ID: Claxton Field Client Sample ID: B-206 - 4-5 Date Sampled: 02/16/23 15:15

Percent Solids: 91 Initial Volume: 20.9g Final Volume: 1ml

Extraction Method: 3546

ESS Laboratory Work Order: 23B0634 ESS Laboratory Sample ID: 23B0634-17

Sample Matrix: Soil Units: mg/kg dry Analyst: TJ

Prepared: 2/21/23 12:35

8270D Polynuclear Aromatic Hydrocarbons

<u>Analyte</u>	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
2-Methylnaphthalene	ND (0.263)		8270D		1	02/21/23 23:40	D3B0383	DB32111
Acenaphthene	ND (0.263)		8270D		1	02/21/23 23:40	D3B0383	DB32111
Acenaphthylene	ND (0.263)		8270D		1	02/21/23 23:40	D3B0383	DB32111
Anthracene	ND (0.263)		8270D		1	02/21/23 23:40	D3B0383	DB32111
Benzo(a)anthracene	ND (0.263)		8270D		1	02/21/23 23:40	D3B0383	DB32111
Benzo(a)pyrene	ND (0.263)		8270D		1	02/21/23 23:40	D3B0383	DB32111
Benzo(b)fluoranthene	ND (0.263)		8270D		1	02/21/23 23:40	D3B0383	DB32111
Benzo(g,h,i)perylene	ND (0.263)		8270D		1	02/21/23 23:40	D3B0383	DB32111
Benzo(k)fluoranthene	ND (0.263)		8270D		1	02/21/23 23:40	D3B0383	DB32111
Chrysene	ND (0.263)		8270D		1	02/21/23 23:40	D3B0383	DB32111
Dibenzo(a,h)Anthracene	ND (0.263)		8270D		1	02/21/23 23:40	D3B0383	DB32111
Fluoranthene	ND (0.263)		8270D		1	02/21/23 23:40	D3B0383	DB32111
Fluorene	ND (0.263)		8270D		1	02/21/23 23:40	D3B0383	DB32111
Indeno(1,2,3-cd)Pyrene	ND (0.263)		8270D		1	02/21/23 23:40	D3B0383	DB32111
Naphthalene	ND (0.263)		8270D		1	02/21/23 23:40	D3B0383	DB32111
Phenanthrene	ND (0.263)		8270D		1	02/21/23 23:40	D3B0383	DB32111
Pyrene	ND (0.263)		8270D		1	02/21/23 23:40	D3B0383	DB32111
	9/	Recovery	Qualifier	Limits				

Surrogate: 1,2-Dichlorobenzene-d4	85 %	30-130
Surrogate: 2-Fluorobiphenyl	85 %	30-130
Surrogate: Nitrobenzene-d5	83 %	30-130
Surrogate: p-Terphenyl-d14	98 %	30-130

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston and Sampson Engineers, Inc.

Client Project ID: Claxton Field Client Sample ID: B-206 - 4-5 Date Sampled: 02/16/23 15:15 ESS Laboratory Work Order: 23B0634 ESS Laboratory Sample ID: 23B0634-17

Sample Matrix: Soil

Subcontracted Analysis

 Analyte Asbestos
 Results (MRL) See Attached (N/A)
 MDL Method
 Limit Limit Limit
 DF Malyst Analyzed
 Analyzed Units
 Batch

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

◆ Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston and Sampson Engineers, Inc.

Client Project ID: Claxton Field Client Sample ID: B-207F - 4-6 Date Sampled: 02/16/23 15:30

Percent Solids: 86

ESS Laboratory Work Order: 23B0634 ESS Laboratory Sample ID: 23B0634-18

Sample Matrix: Soil Units: mg/kg dry

Extraction Method: 3050B

Total Metals

<u>Analyte</u>	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyst		<u>I/V</u>	<u>F/V</u>	Batch
Antimony	ND (5.62)		6010C		1	CEV	02/21/23 11:59	2.06	100	DB32002
Arsenic	8.13 (2.81)		6010C		1	CEV	02/21/23 11:59	2.06	100	DB32002
Barium	287 (2.81)		6010C		1	CEV	02/21/23 11:59	2.06	100	DB32002
Beryllium	0.33 (0.12)		6010C		1	CEV	02/21/23 11:59	2.06	100	DB32002
Cadmium	1.85 (0.56)		6010C		1	CEV	02/21/23 11:59	2.06	100	DB32002
Chromium	20.2 (1.12)		6010C		1	CEV	02/21/23 11:59	2.06	100	DB32002
Lead	455 (5.62)		6010C		1	CEV	02/21/23 11:59	2.06	100	DB32002
Mercury	0.406 (0.033)		7471B		1	YIV	02/23/23 11:33	0.69	40	DB32003
Nickel	23.6 (2.81)		6010C		1	CEV	02/21/23 11:59	2.06	100	DB32002
Selenium	ND (5.62)		6010C		1	CEV	02/21/23 11:59	2.06	100	DB32002
Silver	ND (0.56)		6010C		1	CEV	02/21/23 11:59	2.06	100	DB32002
Thallium	ND (5.62)		6010C		1	CEV	02/21/23 11:59	2.06	100	DB32002
Vanadium	18.9 (1.12)		6010C		1	CEV	02/21/23 11:59	2.06	100	DB32002
Zinc	926 (2.81)		6010C		1	CEV	02/21/23 11:59	2.06	100	DB32002

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston and Sampson Engineers, Inc.

Client Project ID: Claxton Field Client Sample ID: B-207F - 4-6 Date Sampled: 02/16/23 15:30

Percent Solids: 86 Initial Volume: 20.8g Final Volume: 1ml

Extraction Method: 3546

ESS Laboratory Work Order: 23B0634 ESS Laboratory Sample ID: 23B0634-18

Sample Matrix: Soil Units: mg/kg dry Analyst: TJ

Prepared: 2/21/23 12:35

8270D Polynuclear Aromatic Hydrocarbons

Analyte 2-Methylnaphthalene	Results (MRL) ND (0.278)	MDL	Method 8270D	<u>Limit</u>	<u>DF</u>	<u>Analyzed</u> 02/22/23 0:11	Sequence D3B0383	Batch DB32111
Acenaphthene	ND (0.278)		8270D		1	02/22/23 0:11	D3B0383	DB32111
Acenaphthylene	ND (0.278)		8270D		1	02/22/23 0:11	D3B0383	DB32111
Anthracene	ND (0.278)		8270D		1	02/22/23 0:11	D3B0383	DB32111
Benzo(a)anthracene	0.911 (0.278)		8270D		1	02/22/23 0:11	D3B0383	DB32111
Benzo(a)pyrene	0.830 (0.278)		8270D		1	02/22/23 0:11	D3B0383	DB32111
Benzo(b)fluoranthene	0.802 (0.278)		8270D		1	02/22/23 0:11	D3B0383	DB32111
Benzo(g,h,i)perylene	0.428 (0.278)		8270D		1	02/22/23 0:11	D3B0383	DB32111
Benzo(k)fluoranthene	0.486 (0.278)		8270D		1	02/22/23 0:11	D3B0383	DB32111
Chrysene	0.922 (0.278)		8270D		1	02/22/23 0:11	D3B0383	DB32111
Dibenzo(a,h)Anthracene	ND (0.278)		8270D		1	02/22/23 0:11	D3B0383	DB32111
Fluoranthene	1.56 (0.278)		8270D		1	02/22/23 0:11	D3B0383	DB32111
Fluorene	ND (0.278)		8270D		1	02/22/23 0:11	D3B0383	DB32111
Indeno(1,2,3-cd)Pyrene	0.492 (0.278)		8270D		1	02/22/23 0:11	D3B0383	DB32111
Naphthalene	ND (0.278)		8270D		1	02/22/23 0:11	D3B0383	DB32111
Phenanthrene	0.956 (0.278)		8270D		1	02/22/23 0:11	D3B0383	DB32111
Pyrene	1.59 (0.278)		8270D		1	02/22/23 0:11	D3B0383	DB32111

	%Recovery	Qualifier	Limits
Surrogate: 1,2-Dichlorobenzene-d4	87 %		30-130
Surrogate: 2-Fluorobiphenyl	85 %		30-130
Surrogate: Nitrobenzene-d5	81 %		30-130
Surrogate: p-Terphenvl-d14	Q1 0/ ₂		20-120

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Dependability

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston and Sampson Engineers, Inc.

Client Project ID: Claxton Field Client Sample ID: B-207F - 4-6 Date Sampled: 02/16/23 15:30

ESS Laboratory Work Order: 23B0634 ESS Laboratory Sample ID: 23B0634-18

Sample Matrix: Soil

Subcontracted Analysis

Analyte Results (MRL) **MDL** Method **Limit** Analyst Analyzed **Units Batch** DF Asbestos See Attached (N/A)

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181 Dependability

Quality

Fax: 401-461-4486 Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston and Sampson Engineers, Inc.

Client Project ID: Claxton Field Client Sample ID: CF-STOCKPILE Date Sampled: 02/16/23 14:00

Percent Solids: 76

ESS Laboratory Work Order: 23B0634 ESS Laboratory Sample ID: 23B0634-19

Sample Matrix: Soil Units: mg/kg dry

Extraction Method: 3050B

Total Metals

<u>Analyte</u>	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyst		<u>I/V</u>	<u>F/V</u>	Batch
Antimony	ND (6.40)		6010C		1	CEV	02/21/23 12:01	2.06	100	DB32002
Arsenic	4.97 (3.20)		6010C		1	CEV	02/21/23 12:01	2.06	100	DB32002
Barium	88.7 (3.20)		6010C		1	CEV	02/21/23 12:01	2.06	100	DB32002
Beryllium	0.26 (0.14)		6010C		1	CEV	02/21/23 12:01	2.06	100	DB32002
Cadmium	0.70 (0.64)		6010C		1	CEV	02/21/23 12:01	2.06	100	DB32002
Chromium	14.0 (1.28)		6010C		1	CEV	02/21/23 12:01	2.06	100	DB32002
Lead	206 (6.40)		6010C		1	CEV	02/21/23 12:01	2.06	100	DB32002
Mercury	0.433 (0.043)		7471B		1	YIV	02/23/23 11:35	0.61	40	DB32003
Nickel	9.97 (3.20)		6010C		1	CEV	02/21/23 12:01	2.06	100	DB32002
Selenium	ND (6.40)		6010C		1	CEV	02/21/23 12:01	2.06	100	DB32002
Silver	ND (0.64)		6010C		1	CEV	02/21/23 12:01	2.06	100	DB32002
Thallium	ND (6.40)		6010C		1	CEV	02/21/23 12:01	2.06	100	DB32002
Vanadium	17.2 (1.28)		6010C		1	CEV	02/21/23 12:01	2.06	100	DB32002
Zinc	199 (3.20)		6010C		1	CEV	02/21/23 12:01	2.06	100	DB32002

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston and Sampson Engineers, Inc.

Client Project ID: Claxton Field Client Sample ID: CF-STOCKPILE Date Sampled: 02/16/23 14:00

Percent Solids: 76 Initial Volume: 19.5g Final Volume: 1ml

Extraction Method: 3546

ESS Laboratory Work Order: 23B0634 ESS Laboratory Sample ID: 23B0634-19

Sample Matrix: Soil Units: mg/kg dry Analyst: TJ

Prepared: 2/21/23 12:35

8270D Polynuclear Aromatic Hydrocarbons

<u>Analyte</u>	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
2-Methylnaphthalene	ND (0.338)		8270D		1	02/22/23 22:55	D3B0410	DB32111
Acenaphthene	ND (0.338)		8270D		1	02/22/23 22:55	D3B0410	DB32111
Acenaphthylene	1.46 (0.338)		8270D		1	02/22/23 22:55	D3B0410	DB32111
Anthracene	0.891 (0.338)		8270D		1	02/22/23 22:55	D3B0410	DB32111
Benzo(a)anthracene	2.36 (0.338)		8270D		1	02/22/23 22:55	D3B0410	DB32111
Benzo(a)pyrene	2.19 (0.338)		8270D		1	02/22/23 22:55	D3B0410	DB32111
Benzo(b)fluoranthene	1.85 (0.338)		8270D		1	02/22/23 22:55	D3B0410	DB32111
Benzo(g,h,i)perylene	1.32 (0.338)		8270D		1	02/22/23 22:55	D3B0410	DB32111
Benzo(k)fluoranthene	1.40 (0.338)		8270D		1	02/22/23 22:55	D3B0410	DB32111
Chrysene	2.69 (0.338)		8270D		1	02/22/23 22:55	D3B0410	DB32111
Dibenzo(a,h)Anthracene	0.412 (0.338)		8270D		1	02/22/23 22:55	D3B0410	DB32111
Fluoranthene	3.92 (0.338)		8270D		1	02/22/23 22:55	D3B0410	DB32111
Fluorene	0.487 (0.338)		8270D		1	02/22/23 22:55	D3B0410	DB32111
Indeno(1,2,3-cd)Pyrene	1.42 (0.338)		8270D		1	02/22/23 22:55	D3B0410	DB32111
Naphthalene	ND (0.338)		8270D		1	02/22/23 22:55	D3B0410	DB32111
Phenanthrene	4.14 (0.338)		8270D		1	02/22/23 22:55	D3B0410	DB32111
Pyrene	4.57 (0.338)		8270D		1	02/22/23 22:55	D3B0410	DB32111

Qualifier

Limits

Surrogate: 1,2-Dichlorobenzene-d4	80 %	30-130
Surrogate: 2-Fluorobiphenyl	73 %	30-130
Surrogate: Nitrobenzene-d5	80 %	30-130
Surrogate: p-Terphenyl-d14	90 %	30-130

%Recovery

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston and Sampson Engineers, Inc.

Client Project ID: Claxton Field Client Sample ID: CF-STOCKPILE Date Sampled: 02/16/23 14:00 ESS Laboratory Work Order: 23B0634 ESS Laboratory Sample ID: 23B0634-19

Sample Matrix: Soil

Subcontracted Analysis

 Analyte Asbestos
 Results (MRL) See Attached (N/A)
 MDL Method
 Limit Limit Limit
 DF Malyst Analyzed
 Analyzed Units
 Batch

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

Result

BAL Laboratory

The Microbiology Division of Thielsch Engineering, Inc.

%REC

85

84

88

88

83

92

89

86

80-120

80-120

80-120

80-120

80-120

80-120

80-120

80-120

80-120

%REC

Limits

RPD

Qualifier

RPD

Limit

CERTIFICATE OF ANALYSIS

Client Name: Weston and Sampson Engineers, Inc.

Analyte

Bervllium

Cadmium

Chromium

Lead

Nickel

Silver

Selenium

Thallium

Vanadium

Client Project ID: Claxton Field ESS Laboratory Work Order: 23B0634

MRL

Quality Control Data

Units

Spike

Level

72.20

118.0

159.0

230.0

183.0

55.70

46.20

83.30

94.80

Source

Result

			Total Meta	ls			
Batch DB32002 - 3050B							
Blank							
Antimony	ND	4.88	mg/kg wet				
Arsenic	ND	2.44	mg/kg wet				
Barium	ND	2.44	mg/kg wet				
Beryllium	ND	0.11	mg/kg wet				
Cadmium	ND	0.49	mg/kg wet				
Chromium	ND	0.98	mg/kg wet				
Lead	ND	4.88	mg/kg wet				
Nickel	ND	2.44	mg/kg wet				
Selenium	ND	4.88	mg/kg wet				
Silver	ND	0.49	mg/kg wet				
Thallium	ND	4.88	mg/kg wet				
Vanadium	ND	0.98	mg/kg wet				
Zinc	ND	2.44	mg/kg wet				
Blank							
Antimony	ND	0.98	mg/kg wet				
Selenium	ND	0.98	mg/kg wet				
Thallium	ND	0.49	mg/kg wet				
LCS							
Antimony	63.1	15.6	mg/kg wet	59.10	107	80-120	
Arsenic	61.0	7.81	mg/kg wet	65.20	94	80-120	
Barium	642	7.81	mg/kg wet	626.0	103	80-120	

mg/kg wet

Zinc 308 7.81 mg/kg wet 375.0 82 80-120 LCS Antimony 69.0 15.6 mg/kg wet 59.10 117 80-120 48.0 86 80-120 Selenium 15.6 mg/kg wet 55.70 7.81 83.30 78 65-134 Thallium 64.7 mg/kg wet LCS Dup

0.34

1.56

3.12

15.6

7.81

15.6

1.56

15.6

3.12

61.4

98.9

136

203

160

46.4

42.7

73.9

81.7

60.5 15.2 mg/kg wet 59.10 102 80-120 4 30 Antimony 65.20 80-120 9 30 56.0 7.58 mg/kg wet 86 Arsenic 7.58 30 623 626.0 99 80-120 3 Barium mg/kg wet Beryllium 57.6 0.33 mg/kg wet 72.20 80 80-120 20 92.8 118.0 79 80-120 30 Cadmium 1.52 mg/kg wet 6 Chromium 127 3.03 mg/kg wet 159.0 80 80-120 30 189 15.2 mg/kg wet 230.0 80-120 20

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

http://www.ESSLaboratory.com

B-

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston and Sampson Engineers, Inc.

Client Project ID: Claxton Field ESS Laboratory Work Order: 23B0634

Quality Control Data

RPD Limit 7 30 5 30 6 30	
7 30 5 30	
5 30	В-
5 30	В-
5 30	B-
	B-
6 30	
9 30	
6 30	
6 30	B-
5 30	
5 30	
6 30	
1 30	
	5 30 6 30

8270D Polynuclear Aromatic Hydrocarbons

Batch DB32111 - 3546							
Blank							
2-Methylnaphthalene	ND	0.250	mg/kg wet				
Acenaphthene	ND	0.250	mg/kg wet				
Acenaphthylene	ND	0.250	mg/kg wet				
Anthracene	ND	0.250	mg/kg wet				
Benzo(a)anthracene	ND	0.250	mg/kg wet				
Benzo(a)pyrene	ND	0.250	mg/kg wet				
Benzo(b)fluoranthene	ND	0.250	mg/kg wet				
Benzo(g,h,i)perylene	ND	0.250	mg/kg wet				
Benzo(k)fluoranthene	ND	0.250	mg/kg wet				
Chrysene	ND	0.250	mg/kg wet				
Dibenzo(a,h)Anthracene	ND	0.250	mg/kg wet				
Fluoranthene	ND	0.250	mg/kg wet				
Fluorene	ND	0.250	mg/kg wet				
Indeno(1,2,3-cd)Pyrene	ND	0.250	mg/kg wet				
Naphthalene	ND	0.250	mg/kg wet				
Phenanthrene	ND	0.250	mg/kg wet				
Pyrene	ND	0.250	mg/kg wet				
Surrogate: 1,2-Dichlorobenzene-d4	2.35		mg/kg wet	2.500	94	30-130	
Surrogate: 2-Fluorobiphenyl	2.33		mg/kg wet	2.500	93	30-130	
Surrogate: Nitrobenzene-d5	2.35		mg/kg wet	2.500	94	30-130	
Surrogate: p-Terphenyl-d14	2.41		mg/kg wet	2.500	96	30-130	
LCS							_

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston and Sampson Engineers, Inc.

Client Project ID: Claxton Field ESS Laboratory Work Order: 23B0634

Quality Control Data

Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifier
Allalyte						70REC	LIIIIIG	KPD	LIIIIL	Qualifier
	8.	270D Polyni	ıclear Aroma	tic Hydro	carbons					
Batch DB32111 - 3546										
2-Methylnaphthalene	2.34	0.250	mg/kg wet	2.500		93	40-140			
Acenaphthene	2.21	0.250	mg/kg wet	2.500		88	40-140			
Acenaphthylene	1.68	0.250	mg/kg wet	2.500		67	40-140			
Anthracene	2.18	0.250	mg/kg wet	2.500		87	40-140			
Benzo(a)anthracene	2.34	0.250	mg/kg wet	2.500		94	40-140			
Benzo(a)pyrene	2.30	0.250	mg/kg wet	2.500		92	40-140			
Benzo(b)fluoranthene	2.32	0.250	mg/kg wet	2.500		93	40-140			
Benzo(g,h,i)perylene	2.46	0.250	mg/kg wet	2.500		98	40-140			
Benzo(k)fluoranthene	2.51	0.250	mg/kg wet	2.500		100	40-140			
Chrysene	2.35	0.250	mg/kg wet	2.500		94	40-140			
Dibenzo(a,h)Anthracene	2.47	0.250	mg/kg wet	2.500		99	40-140			
Fluoranthene	2.50	0.250	mg/kg wet	2.500		100	40-140			
Fluorene	2.39	0.250	mg/kg wet	2.500		96	40-140			
Indeno(1,2,3-cd)Pyrene	2.33	0.250	mg/kg wet	2.500		93	40-140			
Naphthalene	2.29	0.250	mg/kg wet	2.500		91	40-140			
Phenanthrene	2.25	0.250	mg/kg wet	2.500		90	40-140			
Pyrene	2.35	0.250	mg/kg wet	2.500		94	40-140			
Surrogate: 1,2-Dichlorobenzene-d4	2.46		mg/kg wet	2.500		98	30-130			
Surrogate: 2-Fluorobiphenyl	2.40		mg/kg wet	2.500		96	30-130			
Surrogate: Nitrobenzene-d5	2.46		mg/kg wet	2.500		98	30-130			
Surrogate: p-Terphenyl-d14	2.44		mg/kg wet	2.500		98	30-130			
LCS Dup										
2-Methylnaphthalene	2.29	0.250	mg/kg wet	2.500		92	40-140	2	30	
Acenaphthene	2.20	0.250	mg/kg wet	2.500		88	40-140	0.3	30	
Acenaphthylene	1.63	0.250	mg/kg wet	2.500		65	40-140	3	30	
Anthracene	2.15	0.250	mg/kg wet	2.500		86	40-140	1	30	
Benzo(a)anthracene	2.34	0.250	mg/kg wet	2.500		94	40-140	0.04	30	
Benzo(a)pyrene	2.26	0.250	mg/kg wet	2.500		90	40-140	2	30	
Benzo(b)fluoranthene	2.28	0.250	mg/kg wet	2.500		91	40-140	2	30	
Benzo(g,h,i)perylene	2.49	0.250	mg/kg wet	2.500		99	40-140	1	30	
Benzo(k)fluoranthene	2.49	0.250	mg/kg wet	2.500		100	40-140	0.7	30	
Chrysene	2.32	0.250	mg/kg wet	2.500		93	40-140	1	30	
Dibenzo(a,h)Anthracene	2.46	0.250	mg/kg wet	2.500		98	40-140	0.5	30	
Fluoranthene	2.50	0.250	mg/kg wet	2.500		100	40-140	0.004	30	
Fluorene	2.34	0.250	mg/kg wet	2.500		94	40-140	2	30	
ndeno(1,2,3-cd)Pyrene	2.33	0.250	mg/kg wet	2.500		93	40-140	0.1	30	
Naphthalene	2.26	0.250	mg/kg wet	2.500		90	40-140	1	30	
Phenanthrene	2.25	0.250	mg/kg wet	2.500		90	40-140	0.09	30	
Pyrene	2.29	0.250	mg/kg wet	2.500		92	40-140	2	30	
	2.46		mg/kg wet	2.500		98	30-130	-		
Surrogate: 1,2-Dichlorobenzene-d4	2.46		mg/kg wet	2.500		98	30-130			
Surrogate: 2-Fluorobiphenyl	2.55		mg/kg wet	2.500		<i>102</i>	30-130			
Surrogate: Nitrobenzene-d5	2.33		9,9 *****	2.500			55 150			

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston and Sampson Engineers, Inc.

Client Project ID: Claxton Field ESS Laboratory Work Order: 23B0634

	Notes and Definitions
Z-08	See Attached
U	Analyte included in the analysis, but not detected
EL	Elevated Method Reporting Limits due to sample matrix (EL).
D	Diluted.
B-	Blank Spike recovery is below lower control limit (B-).
ND	Analyte NOT DETECTED at or above the MRL (LOQ), LOD for DoD Reports, MDL for J-Flagged Analytes
dry	Sample results reported on a dry weight basis
RPD	Relative Percent Difference
MDL	Method Detection Limit
MRL	Method Reporting Limit
LOD	Limit of Detection
LOQ	Limit of Quantitation
DL	Detection Limit
I/V	Initial Volume Final Volume
F/V	
§	Subcontracted analysis; see attached report
1	Range result excludes concentrations of surrogates and/or internal standards eluting in that range.
2	Range result excludes concentrations of target analytes eluting in that range.
3	Range result excludes the concentration of the C9-C10 aromatic range.
Avg NR	Results reported as a mathematical average. No Recovery
	·
[CALC]	Calculated Analyte
SUB	Subcontracted analysis; see attached report
RL	Reporting Limit

Reporting Limit RL

EDL Estimated Detection Limit MF Membrane Filtration MPN Most Probable Number **TNTC** Too numerous to Count CFU **Colony Forming Units**

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston and Sampson Engineers, Inc.

Client Project ID: Claxton Field ESS Laboratory Work Order: 23B0634

ESS LABORATORY CERTIFICATIONS AND ACCREDITATIONS

ENVIRONMENTAL

Rhode Island Potable and Non Potable Water: LAI00179 http://www.health.ri.gov/find/labs/analytical/ESS.pdf

Connecticut Potable and Non Potable Water, Solid and Hazardous Waste: PH-0750 http://www.ct.gov/dph/lib/dph/environmental_health/environmental_laboratories/pdf/OutofStateCommercialLaboratories.pdf

Maine Potable and Non Potable Water, and Solid and Hazardous Waste: RI00002 http://www.maine.gov/dhhs/mecdc/environmental-health/dwp/partners/labCert.shtml

Massachusetts Potable and Non Potable Water: M-RI002 http://public.dep.state.ma.us/Labcert/Labcert.aspx

New Hampshire (NELAP accredited) Potable and Non Potable Water, Solid and Hazardous Waste: 2424 http://des.nh.gov/organization/divisions/water/dwgb/nhelap/index.htm

New York (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: 11313 http://www.wadsworth.org/labcert/elap/comm.html

New Jersey (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: RI006 http://datamine2.state.nj.us/DEP_OPRA/OpraMain/pi_main?mode=pi_by_site&sort_order=PI_NAMEA&Select+a+Site:=58715

Pennsylvania: 68-01752

http://www.dep.pa.gov/Business/OtherPrograms/Labs/Pages/Laboratory-Accreditation-Program.aspx

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

A Pace Analytical® Laboratory

Shawn Morrell ESS Laboratory 185 Frances Ave. Cranston, RI 02910 February 24, 2023

Dear Shawn Morrell,

The enclosed analytical results have been obtained using the EPA/600/R-93/116 method. Calibrated Visual Estimate (CVE) is used by Aerobiology for the determination of the percentage of asbestos and other components in the sample. The sample preparation technique used was in accordance with the US EPA office of Environmental Evaluation and Measurement - Region 1 requirements. This technique involves the elimination of interfering particles through the following steps: homogenization of the sample; separation of different fractions and examination under the stereomicroscope.

The quality control data related to the samples analyzed is available upon client's written request. Aerobiology Laboratory Associates, Inc., assumes no responsibility for potential sample contamination that may have occurred during the sample collection process or erroneous data provided by the client. As such, these results apply to the sample(s) as received.

The enclosed results may not be used under any circumstances as product endorsement by any US government agency including NIST/NVLAP.

All Laboratory records are retained for at least three years unless otherwise directed in writing by the client. The actual samples are retained for a period of two months and written request is necessary in order to be retained for a longer period of time. All analytical results and records are considered strictly confidential and will not be released under any circumstances to anyone except the actual client. The analytical results included in this report apply only to the items tested. This report may not be reproduced, except in its entirety, without the permission of Aerobiology Laboratory Associates, Inc., Laboratory Manager.

If you have any questions please contact the Optical Manager or the Laboratory Manager.

Sincerely.

Aimee Cormier, Laboratory Manager

Enclosure:

LAB BATCH ID: S 132432 CLIENT PROJECT ID: 23B0634

Linu L Camer

Client Ref: N/A

CT ID# PH-0209; MA ID# AA000251; ME ID# LB-055; NVLAP Lab Code 200090-0; RI ID # PLM-

00150; VT ID# AL254362.

Client #:

2118

Batch: S 132432 N/A

Client Project:

23B0634

Date Sampled:

Client Reference: Client Name:

N/A **ESS Laboratory** Date Received: 2/22/2023 Date Analyzed: 2/24/2023

Method:

EPA/600/R-93/116; ENV.EVAL. and MEAS.- REGION 1 Requirements

Date of Report: 2/24/2023

				ASBES	TOS %					NON-	ASBEST	OS %		
Sample ID	Color	CHR	AMO	CRO	ACT	TRE	ANT	FBG	MNW	CEL	HAR	SYN	ОТН	NON
23B0634-01	Multi	0	0	0	0	0	0	0_	0	5	0	0	0	95

Description: Soil Location: Comments:

Analyzed:

Yes

				ASBES	TOS %					NON-	ASBEST	OS %		
Sample ID	Color	CHR	AMO	CRO	ACT	TRE	ANT	FBG	MNW	CEL	HAR	SYN	ОТН	NON
23B0634-02	Multi	0	0	0	0	0	0	0	0	5	0	0	0	95

Description: Soil Location: N/A

Comments:

Analyzed: Yes

				ASBES	TOS %					NON-A	ASBEST	OS %		
Sample ID	Color	CHR	AMO	CRO	ACT	TRE	ANT	FBG	MNW	CEL	HAR	SYN	ОТН	NON
23B0634-03	Multi	0	0	0	0	0	0	2	0	5	0	0	0	93

Description: Soil Location:

Comments:

Analyzed: Yes

				ASBES	TOS %					NON-A	ASBEST	OS %		
Sample ID	Color	CHR	AMO	CRO	ACT	TRE	ANT	FBG	MNW	CEL	HAR	SYN	ОТН	NON
23B0634-04	Multi	0	0	0	0	0	0	0	0	2	0	0	0	98

Description: Soil Location: Comments:

Analyzed:

Yes

3					AGDDO	TOS %					NON-A	SBEST	US %		
	Sample ID	Color	CHR	AMO	CRO	ACT	TRE	ANT	FBG	MNW	CEL	HAR	SYN	ОТН	NON
	23B0634-05	Multi	0	0	0	0	0	0	2	0	5	0	0	0	93

Description: Soil Location: N/A Comments:

Analyzed: Yes

				ASBES	TOS %					NON-A	ASBEST	OS %		
Sample ID	Color	CHR	AMO	CRO	ACT	TRE	ANT	FBG	MNW	CEL	HAR	SYN	ОТН	NON
23B0634-06	Multi	0	0	0	0	0	0	0	0	2	0	0	0	98

Description: Soil Location: N/A Comments:

Analyzed: Yes

Client #:

2118

Batch:

S 132432

Client Project: Client Reference: N/A

23B0634

Date Sampled:

N/A

Date Received:

2/22/2023

Client Name:

ESS Laboratory

Date Analyzed:

2/24/2023

Method:

EPA/600/R-93/116; ENV.EVAL. and MEAS.- REGION 1 Requirements

Date of Report:

2/24/2023

				ASBES	TOS %					NON-	<i>ASBEST</i>	OS %		
Sample ID	Color	CHR	AMO	CRO	ACT	TRE	ANT	FBG	MNW	CEL	HAR	SYN	ОТН	NON
23B0634-07	Multi	0	0	0	0	0_	0	0	0	15	0	0	0	85

Description: Soil Location: N/A Comments:

Analyzed: Yes

				ASBES	TOS %		-			NON-A	<i>ASBEST</i>	OS %		
Sample ID	Color	CHR	AMO	CRO	ACT	TRE	ANT	FBG	MNW	CEL	HAR	SYN	ОТН	NON
23B0634-08	Multi	0	0	0	0	0	0	0	0	2	.0	0	2	96

Description: Soil Location:

Comments:

Analyzed:

Yes

				ASBES	TOS %					NON-	ASBEST	OS %		
Sample ID	Color	CHR	AMO	CRO	ACT	TRE	ANT	FBG	MNW	CEL	HAR	SYN	ОТН	NON
23B0634-09	Multi	0	0	0	0	0	0	0	0	2	0	0	0	98

Description: Soil Location: N/A

Comments:

Yes Analyzed:

				ASDES	TOS %					NON-A	ASBEST	JS 70		
Sample ID	Color	CHR	AMO	CRO	ACT	TRE	ANT	FBG	MNW	CEL	HAR	SYN	ОТН	NON
23B0634-10	Multi	0	0	0	0	0	0	0	0	2	0	0	0	98

Description: Soil Location:

Comments:

Analyzed:

Yes

				ASBES	TOS %					NON-	ASBEST	OS %		
Sample ID	Color	CHR	AMO	CRO	ACT	TRE	ANT	FBG	MNW	CEL	HAR	SYN	ОТН	NON
23B0634-11	Multi	0	0	0	0	0	0	0	0	3	0	0	0	97

Description: Soil Location: N/A Comments:

Analyzed: Yes

				ASBES	TOS %					NON-A	SBEST	OS %		
Sample ID	Color	CHR	AMO	CRO	ACT	TRE	ANT	FBG	MNW	CEL	HAR	SYN	отн	NON
23B0634-12	Multi	0	0	0	0	0	0	0	0	5	0	0	0	95

Description: Soil Location: N/A Comments:

Analyzed: Yes

Client #:

2118

Batch:

S 132432

Client Project: Client Reference:

23B0634 N/A

Date Sampled:

N/A 2/22/2023

Client Name:

ESS Laboratory

Date Received:

Date Analyzed: 2/24/2023

Method:

EPA/600/R-93/116; ENV.EVAL. and MEAS.- REGION 1 Requirements

Date of Report:

2/24/2023

				ASBES	TOS %					NON-	ASBEST	OS %		
Sample ID	Color	CHR	AMO	CRO	ACT	TRE	ANT	FBG	MNW	CEL	HAR	SYN	ОТН	NON
23B0634-13	Multi	0	0	0	0	0	0	0	0	2	0	0	0	98

Description: Soil Location: Comments:

Analyzed:

Yes

				ASBES	TOS %					NON-	ASBEST	OS %		
Sample ID	Color	CHR	AMO	CRO	ACT	TRE	ANT	FBG	MNW	CEL	HAR	SYN	ОТН	NON
23B0634-14	Multi	0	0	0	0	0	0	2	0	2	0	0	0	96

Description: Soil Location: Comments:

Analyzed:

Yes

				ASBES	TOS %					NON-	<i>ASBEST</i>	OS %		
Sample ID	Color	CHR	AMO	CRO	ACT	TRE	ANT	FBG	MNW	CEL	HAR	SYN	ОТН	NON
23B0634-15	Multi	0	0	0	0	0	0	0	0	7	0	0	0	93

Description: Soil Location:

Comments:

Analyzed:

Yes

Sample ID Color CHR AMO CRO ACT TRE ANT FBG MNV	MNW CEL	CEL HAR	SYN	ОТН	NON
			3111	UIA	NON
23B0634-16 Multi 0 0 0 0 0 0 0 0	0 2	2 0	0	0	98

Description: Soil Location: Comments:

Analyzed:

Yes

			_	ASBES	TOS %					NON-A	ASBEST	OS %		
Sample ID	Color	CHR	AMO	CRO	ACT	TRE	ANT	FBG	MNW	CEL	HAR	SYN	ОТН	NON
23B0634-17	Multi	0	0	0	0	0	0	0	0	<1	0	0	0	100

Description: Soil Location: N/A Comments:

Analyzed:

Yes

				ASBES	TOS %				_	NON-	ASBEST	OS %		
Sample ID	Color	CHR	AMO	CRO	ACT	TRE	ANT	FBG	MNW	CEL	HAR	SYN	ОТН	NON
23B0634-18	Multi	0	0	0	0	0	0	0	0	5	0	0	0	95

Description: Soil Location: N/A Comments:

Analyzed:

Yes

Client #:

2118

Batch:

S 132432

Client Project: Client Reference: 23B0634

Date Sampled:

N/A 2/22/2023

N/A

Date Received:

2/24/2023

Client Name:

ESS Laboratory

Date Analyzed:

Method:

EPA/600/R-93/116; ENV.EVAL. and MEAS.- REGION 1 Requirements

Date of Report: 2/24/2023

	T			ASBES	TOS %	-				NON-A	ASBEST	OS %		
Sample ID	Color	CHR	AMO	CRO	ACT	TRE	ANT	FBG	MNW	CEL	HAR	SYN	ОТН	NON
23B0634-19	Multi	0	0	0	0	0	0	0	0	15	0	0	0	85

Description: Soil Location: Comments:

N/A

Analyzed:

Yes

Asbestos Codes:

CHR = Chrysotile

ACT = Actinolite

TRE = Tremolite

ANT = Anthophyllite

AMO = Amosite

CRO = Crocidolite

FBG = Fiberglass MNW = Mineral Wool Non-Asbestos Codes: CEL = Cellulose HAR = Hair SYN = Synthetic OTH = Other NON = Non-Fibrous Minerals Note: To create a unique lab sample ID, use the Batch # and the Sample ID (example: [Batch #] - [Sample ID]).

* All results are in percentage

Brian Shea, Analyst

Client Name: ESS Laboratory

Client Project #: 23B0634 Client Reference: N/A Batch:

Date Received: 2/22/2023
Date Due: 2/24/2023
Stop on first pos: Yes or No

Batch: 132432					eo S	cope		0	ptical Pro	perti	es	RI			Asbe	estos	Per	cent	1100		Non	-Asb	estos	Per	cent	
Sample ID	Description	Analyst 🙈	SSAPE	Color	Homogeneity	Texture	Friable	Morphology	Sign of Elongation Extinction	Birefringence	Pleochroism	Parallel	Perpendicular	Chrysotile	Amosite	Crocidolite	Tremolite	Anthophyllite	Actinolite	Fiberglass	Mineral Wool	Cellulose	Hair	Synthetic	Other	Non-Fibrous
23B0634-01	Soil		0	14	N	M	y															w				93
23B0634-02	Soil		0	M	N	MT	У															u	/			9
23B0634-03	Soil		0	W U	N	M	У													HL 2	·	h 5	-			9
23B0634-04	Soil		0	M	И	1	y															42	/			9
23B0634-05	Soil		0	Me	N	14	y													1/2		W	_			9
23B0634-06	Soil		0	MC	M	M	y															2	/			19
23B0634-07	Soil		0	Me	N	14	Y															W/5	-		-	P
23B0634-08	Soil	V	0	MC	N	M	y															n 2	/	7	1/4	91

Batch: 132432				Ster	eo S	cope		0	ptica	l Pro	perti	es	R	1			estos	Per	cent			Non	Asbe	stos	Per	cent	
Sample ID	Description	Analys	SSAPE	Color	Homogeneity	Texture	Friable	Morphology	Extinction	Sign of Elongation	Birefringence	Pleochroism	Parallel	Perpendicular	Chrysotile	Amosite	Crocidolite	Tremolite	Anthophyllite	Actinolite	Fiberglass	Mineral Wool	Cellulose	Hair	Synthetic	Other	Non-Fibrous
23B0634-09	Soil		0	MC	N	M	4																W 2				<i>a</i>
23B0634-10	Soil		0	M	H	4	y																W 2				98
23B0634-11	Soil		0	Me	N	M	y																W ?				9
23B0634-12	Soil		0	M	И	M	y																W 5				9
23B0634-13	Soil		()	Mc	H	M	y																w 2				9
23B0634-14	Soil		0	M	N	M	4														XL 2	-	2				9
23B0634-15	Soil		()	Me	H	14	y																W 7				$\frac{\iota}{9}$
23B0634-16	Soil		0	M	H	4	y																N 2				9
23B0634-17	Soil		Ô	Me	H	M	Y																w -1				10
23B0634-18	Soil	,	0	M	M	4	Y															-	W 5				95

Comments:

Batch: 132432				Ster	eo So	ope		O	otical Prop	pertie	es	RI			Asbe	stos	Perc	cent	lan i		Non-	Asbe	estos	Per	cent	
Sample ID	Description	Analyst	SSAPE	Color	Homogeneity	Texture	Friable	Morphology	Sign of Elongation Extinction	Birefringence	Pleochroism	Parallel	Perpendicular	Chrysotile	Amosite	Crocidolite	Tremolite	Anthophyllite	Actinolite	Fiberglass	Mineral Wool	Cellulose	Hair	Synthetic	Other	Non-Fibrous
23B0634-19	Soil	V	0	Me	H	M	Y															W 15				85

Analyzed By / Date:

Fax, Email, Verbal Results By / Date:

of Samples:

19

15 rean Den QC By / Date: 49,

23B0634

SENDING LABORATORY:		RECEIVING LABO	ORATORY:	
ESS Laboratory		Aerobiology Boston		
185 Frances Avenue		22 Cummings Park		
Cranston, RI 02910		Woburn, MA 01801	l	
Phone: (401) 461-7181		Phone :(781) 935-3	212	
Fax: (401) 461-4486		Fax: (781) 392-485	7	
Project Name: 23B0634		☐ These sample	les require MCI	exceedance reporting
Sample ID: 23B0634-01		Matrix: Soil		Sampled: 02/16/23 10:45
DEP Location Name: N/A		DEP Sample Type:	N/A	
DEP Location ID#: N/A		Sampled By: N/A		
Analysis		Due	Expires	
SUB: Asbestos		2/24/2023	2/17/2023	
Sample ID: 23B0634-02		Matrix: Soil		Sampled: 02/16/23 10:45
DEP Location Name: N/A		DEP Sample Type:	N/A	
DEP Location ID#: N/A		Sampled By: N/A		
Analysis		Due	Expires	
SUB: Asbestos		2/24/2023	2/17/2023	
Sample ID: 23B0634-03		Matrix: Soil		Sampled: 02/16/23 10:45
DEP Location Name: N/A		DEP Sample Type:	N/A	
DEP Location ID#: N/A		Sampled By: N/A		
Analysis		Due	Expires	
SUB: Asbestos		2/24/2023	2/17/2023	
Sample ID: 23B0634-04		Matrix: Soil		Sampled: 02/16/23 10:15
DEP Location Name: N/A		DEP Sample Type:	N/A	
DEP Location ID#: N/A		Sampled By: N/A		
Analysis		Due	Expires	
SUB: Asbestos		2/24/2023	2/17/2023	
Sample ID: 23B0634-05		Matrix: Soil		Sampled: 02/16/23 10:15
DEP Location Name: N/A		DEP Sample Type:	N/A	
DEP Location ID#: N/A		Sampled By: N/A		
Analysis		Due	Expires	
SUB: Asbestos		2/24/2023	2/17/2023	
Released By	Date	Received By	- / -	Date
Released By	Date	Received By	2/20	Date 1.18

23B0634

Sample ID: 23B0634-06 Matrix: Soil Sampled: 02/16/23 13:30 DEP Sample Type: N/A DEP Location Name: N/A DEP Location ID#: N/A Sampled By: N/A Analysis Due **Expires** 2/17/2023 SUB: Asbestos 2/24/2023 Sampled: 02/16/23 13:30 Matrix: Soil Sample ID: 23B0634-07 DEP Sample Type: N/A DEP Location Name: N/A Sampled By: N/A DEP Location ID#: N/A Analysis Due **Expires** 2/24/2023 2/17/2023 SUB: Asbestos Sample ID: 23B0634-08 Sampled: 02/16/23 13:30 Matrix: Soil DEP Location Name: N/A DEP Sample Type: N/A Sampled By: N/A DEP Location ID#: N/A Analysis Due **Expires** 2/24/2023 2/17/2023 SUB: Asbestos Sample ID: 23B0634-09 Matrix: Soil Sampled: 02/16/23 12:00 DEP Sample Type: N/A DEP Location Name: N/A **DEP Location ID#: N/A** Sampled By: N/A Due **Expires** Analysis 2/24/2023 2/17/2023 SUB: Asbestos Sample ID: 23B0634-10 Matrix: Soil Sampled: 02/16/23 12:00 DEP Location Name: N/A DEP Sample Type: N/A DEP Location ID#: N/A Sampled By: N/A Due Analysis **Expires** 2/24/2023 2/17/2023 SUB: Asbestos Sample ID: 23B0634-11 Matrix: Soil Sampled: 02/16/23 12:00 DEP Location Name: N/A DEP Sample Type: N/A DEP Location ID#: N/A Sampled By: N/A Analysis Due **Expires** SUB: Asbestos 2/24/2023 2/17/2023

Released By	Date	Received By	Date	
Released By	Date	Received By	Date	

23B0634

Matrix: Soil Sampled: 02/16/23 14:30 Sample ID: 23B0634-12 DEP Sample Type: N/A DEP Location Name: N/A DEP Location ID#: N/A Sampled By: N/A Due **Expires** Analysis 2/24/2023 2/17/2023 SUB: Asbestos Sample ID: 23B0634-13 Sampled: 02/16/23 14:30 Matrix: Soil DEP Sample Type: N/A DEP Location Name: N/A Sampled By: N/A DEP Location ID#: N/A Analysis Due **Expires** SUB: Asbestos 2/24/2023 2/17/2023 Matrix: Soil Sampled: 02/16/23 14:30 Sample ID: 23B0634-14 DEP Location Name: N/A DEP Sample Type: N/A DEP Location ID#: N/A Sampled By: N/A Analysis Due **Expires** 2/24/2023 2/17/2023 SUB: Asbestos Sample ID: 23B0634-15 Matrix: Soil Sampled: 02/16/23 15:15 **DEP Location Name: N/A** DEP Sample Type: N/A DEP Location ID#: N/A Sampled By: N/A Due Analysis **Expires** 2/24/2023 2/17/2023 SUB: Asbestos Sample ID: 23B0634-16 Matrix: Soil Sampled: 02/16/23 15:15 DEP Location Name: N/A DEP Sample Type: N/A DEP Location ID#: N/A Sampled By: N/A Analysis Due **Expires** SUB: Asbestos 2/24/2023 2/17/2023 Sample ID: 23B0634-17 Matrix: Soil Sampled: 02/16/23 15:15 DEP Location Name: N/A DEP Sample Type: N/A **DEP Location ID#: N/A** Sampled By: N/A Analysis Due **Expires** SUB: Asbestos 2/24/2023 2/17/2023

Released By	Date	Received By	Date	4
Released By	Date	Received By	Date	

23B0634

Sample ID: 23B0634-18

Matrix: Soil

Sampled: 02/16/23 15:30

DEP Location Name: N/A

DEP Sample Type: N/A

DEP Location ID#: N/A

Sampled By: N/A

Analysis

Due

Expires

SUB: Asbestos

2/24/2023

2/17/2023

Sample ID: 23B0634-19

Matrix: Soil

Sampled: 02/16/23 14:00

DEP Location Name: N/A
DEP Location ID#: N/A

DEP Sample Type: N/A

Sampled By: N/A

Analysis

Due

Expires

SUB: Asbestos

2/24/2023

2/17/2023

Released By	Date	Received By	Date	- 11
Released By	Date	Received By	Date	

Pace Analytical Services, LLC.

1700 Elm Street Minneapolis, MN 55414 Phone: 612.607.1700

Fax: 612.607.6444

Report Prepared for:

Shawn Morrell **ESS** Laboratory 185 Frances Avenue Cranston RI 02910-2211

> REPORT OF LABORATORY **ANALYSIS FOR** PCDD/PCDF

Report Information:

Pace Project #: 10643743

Sample Receipt Date: 02/22/2023

Client Project #: 23B0634 Client Sub PO #: B03045

State Cert #: N/A

Invoicing & Reporting Options:

The report provided has been invoiced as a Level 2 PCDD/PCDF Report. If an upgrade of this report package is requested, an additional charge may be applied.

Please review the attached invoice for accuracy and forward any questions to Joanne Richardson, your Pace Project Manager.

This report has been reviewed by:

March 10, 2023

Joanne Richardson, (612) 607-6453

(612) 607-6444 (fax)

Report of Laboratory Analysis

This report should not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

The results relate only to the samples included in this report.

March 10, 2023

Pace Analytical Services, LLC.

1700 Elm Street Minneapolis, MN 55414 Phone: 612.607.1700

Fax: 612.607.6444

DISCUSSION

This report presents the results from the analyses performed on nine samples submitted by a representative of ESS Laboratory. The samples were analyzed for the presence or absence of polychlorodibenzo-p-dioxins (PCDDs) and polychlorodibenzofurans (PCDFs) using a modified version of USEPA Method 8290. The estimated detection limits (EDLs) were based on signal-to-noise measurements. Estimated maximum possible concentration (EMPC) values were treated as positives in the toxic equivalence calculations.

Second column confirmation analyses of 2,3,7,8-TCDF values obtained from the primary (DB5-MS) column are performed only when specifically requested for a project and only when the values are above the concentration of the lowest calibration standard. Typical resolution for this isomer using the DB5-MS column ranges from 25-30%.

The recoveries of the isotopically-labeled PCDD/PCDF internal standards in the sample extracts ranged from 52-115%. All of the labeled standard recoveries obtained for this project were within the 40-135% target range specified in Method 8290. Also, since the quantification of the native 2,3,7,8-substituted congeners was based on isotope dilution, the data were automatically corrected for variation in recovery and accurate values were obtained.

Values were flagged "I" where incorrect isotope ratios were obtained or "P" where polychlorinated diphenyl ethers were present. Concentrations below the calibration range were flagged "J" and should be regarded as estimates.

A laboratory method blank was prepared and analyzed with the sample batch as part of our routine quality control procedures. The results show the blank to contain a trace level of Total HpCDD. This level was below the calibration range for the method. The Total HpCDD concentrations reported for the field samples were higher than the corresponding blank level by one or more orders of magnitude.

A laboratory spike sample was also prepared using clean reference matrix that had been fortified with native standard materials. The recoveries of the native compounds ranged from 95-125%. These results were within the target range for the method. Matrix spikes were prepared with the sample batch using sample material from a separate project; results from these analyses will be provided upon request.

The responses obtained for selected labeled congeners in calibration standard analyses L230301B_17 and L230303A_13 were outside the target ranges. As specified in our procedures for this method, the averages of the daily response factors for these compounds were used in the calculations for the samples from these runshifts. The affected values were flagged "Y" on the results tables.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Tel: 612-607-1700 Fax: 612-607-6444

Minnesota Laboratory Certifications

Authority	Certificate #	Authority	Certificate #
		Missouri	10100
A2LA	2926.01	Montana	CERT0092
Alabama	40770	Nebraska	NE-OS-18-06
Alaska-DW	MN00064	Nevada	MN00064
Alaska-UST	17-009	New Hampshire	2081
Arizona	AZ0014	New Jersey	MN002
Arkansas - WW	88-0680	New York	11647
Arkansas-DW	MN00064	North Carolina-	27700
California	2929	North Carolina-	530
Colorado	MN00064	North Dakota	R-036
Connecticut	PH-0256	Ohio-DW	41244
Florida	E87605	Ohio-VAP (170	CL101
Georgia	959	Ohio-VAP (180	CL110
Hawaii	MN00064	Oklahoma	9507
Idaho	MN00064	Oregon-Primary	MN300001
Illinois	200011	Oregon-Second	MN200001
Indiana	C-MN-01	Pennsylvania	68-00563
Iowa	368	Puerto Rico	MN00064
Kansas	E-10167	South Carolina	74003
Kentucky-DW	90062	Tennessee	TN02818
Kentucky-WW	90062	Texas	T104704192
Louisiana-DEQ	AI-84596	Utah	MN00064
Louisiana-DW	MN00064	Vermont	VT-027053137
Maine	MN00064	Virginia	460163
Maryland	322	Washington	C486
Michigan	9909	West Virginia-D	382
Minnesota	027-053-137	West Virginia-D	9952C
Minnesota-Ag	via MN 027-053	Wisconsin	999407970
Minnesota-Petr	1240	Wyoming-UST	via A2LA 2926.
Mississippi	MN00064		

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Pace Analytical Services, LLC

1700 Elm Street, Suite 200 Minneapolis, MN 55414 Phone: 612.607.1700 Fax: 612.607.6444 www.pacelabs.com

Appendix A

Sample Management

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

WO#:10643743

23B0634

_	-		T		L T	_	т		n	^	n		m	\sim	n	٧,	٠
3	Ľ.	ľ	٩L	П	Α,	U	L	А	D	v	ĸ	. А	. 1	v	\mathbf{r}	. ĸ	

ESS Laboratory 185 Frances Avenue

Cranston, RI 02910 Phone: (401) 461-7181

Fax: (401) 461-4486

Project Name: 23B0634

RECEIVING LABORATORY:

Pace Analytical 1700 Elm Street

Minneapolis, MN 55414

Phone:(612) 607-1700

Fax: (612) 607-6444

☐ These samples require MCL exceedance reporting

Sample ID: 23B0634-06	Matrix: Soil		Sampled: 02/16/23 13:30	O(1)
DEP Location Name: N/A	DEP Sample Type: N/A			00
DEP Location ID#: N/A	Sampled By: N/A			
Analysis	Due	Expires		
Sample ID: 23B0634-07	Matrix: Soil		Sampled: 02/16/23 13:30	
DEP Location Name: N/A	DEP Sample Type: N/A			$\mathcal{M}_{\mathcal{L}}$
DEP Location ID#: N/A	Sampled By: N/A			
Analysis	Due	Expires		. 4
Sample ID: 23B0634-08	Matrix: Soil		Sampled: 02/16/23 13:30	W3
DEP Location Name: N/A	DEP Sample Type: N/A			0,
DEP Location ID#: N/A	Sampled By: N/A			
Analysis	Due	Expires		
Sample ID: 23B0634-09	Matrix: Soil		Sampled: 02/16/23 12:00	aM
DEP Location Name: N/A	DEP Sample Type: N/A			
DEP Location ID#: N/A	Sampled By: N/A			
Analysis	Due	Expires		
Sample ID: 23B0634-10	Matrix: Soil		Sampled: 02/16/23 12:00	CUC
DEP Location Name: N/A	DEP Sample Type: N/A			000
DEP Location ID#: N/A	Sampled By: N/A		•	
Analysis	Due	Expires		
		en 12 gen	Carlytin a.	
2/2/27 1012	D-B/PARC		2/22/23 945	4.99
Released By Date	Received By		Date	
7				
Released By Date	Received By		Date	

23B0634

Sample ID: 23B0634-11 DEP Location Name: N/A	Matrix: Soil DEP Sample Type: N/A		Sampled: 02/16/23 12:00
DEP Location ID#: N/A	Sampled By: N/A		
Analysis	Due	Expires	
Sample ID: 23B0634-12	Matrix: Soil		Sampled: 02/16/23 14:30
DEP Location Name: N/A	DEP Sample Type: N/A		\mathcal{W}^{\prime}
DEP Location ID#: N/A	Sampled By: N/A		
Analysis	Due	Expires	
Sample ID: 23B0634-13	Matrix: Soil		Sampled: 02/16/23 14:30
Sample ID: 23B0634-13 DEP Location Name: N/A	Matrix: Soil DEP Sample Type: N/A		Sampled: 02/16/23 14:30
· •			Sampled: 02/16/23 14:30
DEP Location Name: N/A	DEP Sample Type: N/A	Expires	Sampled: 02/16/23 14:30
DEP Location Name: N/A DEP Location ID#: N/A	DEP Sample Type: N/A Sampled By: N/A	Expires	Sampled: 02/16/23 14:30 Sampled: 02/16/23 14:30
DEP Location Name: N/A DEP Location ID#: N/A Analysis	DEP Sample Type: N/A Sampled By: N/A Due	Expires	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
DEP Location Name: N/A DEP Location ID#: N/A Analysis Sample ID: 23B0634-14	DEP Sample Type: N/A Sampled By: N/A Due Matrix: Soil	Expires	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

	0/21/27	15(17-		26262	<i>G</i> ur	4.90
_	2/21/23	15!1	Dr. B/PACE	2/22/23	945	
Released By		Date	Received By	Date		
Released By		Date	Received By	Date		·

Page 2 of 2

23B0634

LABORATORY		23B0034		
SENDING LABORATORY:		RECEIVING LABORA	TORY:	
ESS Laboratory 185 Frances Avenue		Pace Analytical 1700 Elm Street		
Cranston, RI 02910		Minneapolis, MN 5541	4	
Phone: (401) 461-7181		Phone :(612) 607-1700		
Fax: (401) 461-4486		Fax: (612) 607-6444		
Project Name: 23B0634		☐ These samples	require MC	L exceedance reporting
Sample ID: 23B0634-06		Matrix: Soil		Sampled: 02/16/23 13:30
DEP Location Name: N/A		DEP Sample Type: N/A		
DEP Location ID#: N/A		Sampled By: N/A		
Analysis		Due	Expires	
SUB: Dioxin		2/24/2023	2/17/2023	
Sample ID: 23B0634-07		Matrix: Soil		Sampled: 02/16/23 13:30
DEP Location Name: N/A		DEP Sample Type: N/A		
DEP Location ID#: N/A		Sampled By: N/A		
Analysis		Due	Expires	
SUB: Dioxin		2/24/2023	2/17/2023	
Sample ID: 23B0634-08		Matrix: Soil		Sampled: 02/16/23 13:30
DEP Location Name: N/A		DEP Sample Type: N/A		
DEP Location ID#: N/A		Sampled By: N/A		
Analysis		Due	Expires	
SUB: Dioxin		2/24/2023	2/17/2023	
Sample ID: 23B0634-09		Matrix: Soil		Sampled: 02/16/23 12:00
DEP Location Name: N/A		DEP Sample Type: N/A		
DEP Location ID#: N/A		Sampled By: N/A		
Analysis		Due	Expires	
SUB: Dioxin		2/24/2023	2/17/2023	
Sample ID: 23B0634-10		Matrix: Soil		Sampled: 02/16/23 12:00
DEP Location Name: N/A		DEP Sample Type: N/A		
DEP Location ID#: N/A		Sampled By: N/A		
Analysis		Due	Expires	
SUB: Dioxin		2/24/2023	2/17/2023	
Released By	Date	Received By		Date
Released By	Date	Received By		Date

23B0634

Sample ID: 23B0634-11 Matrix: Soil Sampled: 02/16/23 12:00

DEP Location Name: N/A

DEP Sample Type: N/A

DEP Location ID#: N/A Sampled By: N/A

 Analysis
 Due
 Expires

 SUB: Dioxin
 2/24/2023
 2/17/2023

Sample ID: 23B0634-12 Matrix: Soil Sampled: 02/16/23 14:30

DEP Location Name: N/A DEP Sample Type: N/A

DEP Location ID#: N/A Sampled By: N/A

 Analysis
 Due
 Expires

 SUB: Dioxin
 2/24/2023
 2/17/2023

Sample ID: 23B0634-13 Matrix: Soil Sampled: 02/16/23 14:30

DEP Location Name: N/A DEP Sample Type: N/A

DEP Location ID#: N/A Sampled By: N/A

 Analysis
 Due
 Expires

 SUB: Dioxin
 2/24/2023
 2/17/2023

Sample ID: 23B0634-14 Matrix: Soil Sampled: 02/16/23 14:30

DEP Location Name: N/A DEP Sample Type: N/A

DEP Location ID#: N/A Sampled By: N/A

 Analysis
 Due
 Expires

 SUB: Dioxin
 2/24/2023
 2/17/2023

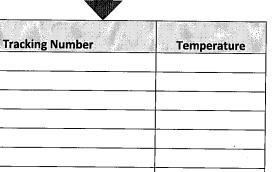
 Released By
 Date
 Received By
 Date

 Released By
 Date
 Received By
 Date

/ Dann	•
ARALYTICAL SERVI	

DC#_Title: ENV-FRM-MIN4-0142 v02_Sample Condition Upon Receipt (SCUR) Exception Form

Effective Date: 09/22/2022


Workorder #:

10643743

Read Temp	Corrected Temp	Average temp
5,5	5.8	4.9
<i>5.</i> 5	5.8	
3.8	4.1	
3.5	3.8	

PM Noti	fied of Out of Temp Cooler? 🔲 Yes 🔲 No					
If yes, indicate who was contacted, date and time. If no, indicate reason why.						
	•					

If anything is OVER 6.0° C, you MUST document containers in this section HERE

Out of Temp Sample ID	Container Type	# of Containers
	. 35:18	Antonia de Astronomo de Astrono
	· · · · · · · · · · · · · · · · · · ·	

pH Adjustment Log for Preserved Samples							f jar			
Sample ID	Type Of Preserve	pH Upon Receipt	Date Adjusted	Time Adjusted	Amount Added (mL)	Lot # Added	pH After	Al	ipliance ter ition?	Initials
								☐ Yes	☐ No	
								☐ Yes	□ No	
								☐ Yes	□No	
								☐ Yes	□No	
								☐ Yes	☐ No	
								☐ Yes	□ No	
								☐ Yes	□ No	
								□Yes	□No	


Comments:		

Qualtrax ID: 52763

DC#_Title: Excel Form Template

Effective Date:

Sample Condition Client Name:			Pro	ject #	‡: ■	10# : 1 06/27/2
Upon Receipt ESS Laboratory					[104:10643743
C) Later appre	-				F	M: JMR Due Date: 03/15/23
Courier: FedEx UPS USPS Client Pace SpeeDee Commercial	,	,				ELIENT: ESS LAB
Tracking Number: 12 837 497 01 7208 7788	EN' _EN'	See E V-FRM	xce	ptions 14-014	; 2	
Custody Seal on Cooler/Box Present? Yes Ano Se	eals	Intact?	. [Yes	No-No	Biological Tissue Frozen? Yes No 📈 N/A
Packing Material: 📈 Bubble Wrap 😾 Bubble Bags		None	•		Oth	er Temp Blank? Yes No
Thermometer: □ T1 (0461) □ T2 (1336) □ T3 (0459) □ T4 (0254) □ T5 (0178) Type of Ice: ☑ Wet □ Blue □ Dry □ None □ T6 (0235) □ T7 (0042) □ T8 (0775) ☑ T9(0727) □ 01339252/1710 □ Melted						
Did Samples Originate in West Virginia? Yes No				,	Were All C	ontainer Temps Taken? Yes No N/A
Temp should be above freezing to 6 °C Cooler temp Read w/Temp Read	emp	Blank			°C	Average Corrected Temp
10.2						(no temp blank only):°C
Correction Factor: 10,3 Cooler Temp Corrected w/to	emp	blank:			_°C	See Exceptions ENV-FRM-MIN4-0142 1 Container
USDA Regulated Soil: (N/A, water sample/other:			_)			Date/Initials of Person Examining Contents: WB 2/22/23
Did samples originate in a quarantine zone within the United Stat	:es: /	AL, AR,	AZ (CA, FL,		Did samples originate from a foreign source (internationally,
GA, ID, LA, MS, NC, NM, NY, OK, OR, SC, TN, TX, or VA (check map		,		,		including Hawaii and Puerto Rico)? Yes 📝 No
If Yes to either question, fill out a Regulated	Soil	Check	list (ENV-F	RM-MIN4	0154) and include with SCUR/COC paperwork.
Location (Check one): Duluth Minneap			,	rginia		COMMENTS
Chain of Custody Present and Filled Out?	K	Yes		No		1.
Chain of Custody Relinquished?	\boxtimes	Yes		No		2.
Sampler Name and/or Signature on COC?		Yes	D	No	N/A	3.
Samples Arrived within Hold Time?	\times	Yes	Ĺ	No		4. If fecal: <8 hrs >8 hr, <24 No
Short Hold Time Analysis (<72 hr)?		Yes	X	No		5. Fecal Coliform HPC Total Coliform/E.coli
			•			BOD/cBOD Hex Chrom Turbidity Nitrate Nitrite Orthophos Other
Rush Turn Around Time Requested?		Yes	K	No		6.
Sufficient Sample Volume?	X	Yes		No		7.
Correct Containers Used?	区	_Yes		No	N/A	8.
-Pace Containers Used?		Yes	Z	No		
Containers Intact?	X	Yes		No		9.
Field Filtered Volume Received for Dissolved Tests?		Yes		No	N/A	10. Is sediment visible in the dissolved container? Yes No
Is sufficient information available to reconcile the samples to the	X	Yes		No		11. If no, write ID/Date/Time of container below:
COC? Matrix: Water -Soil Oil Other						See Exceptions ENV-FRM-MIN4-0142
All containers needing acid/base preservation have been		Yes		No	N/A	
checked?	L1		L	1	123 . 47	
All containers needing preservation are found to be in	П	Yes	Г	No	⊠ N/A	NaOH HNO3
compliance with EPA recommendation?		•	Carry	•	tamble .	H2SO4 Zinc Acetate
(HNO3, H2SO4, <2pH, NaOH >9 Sulfide, NaOH>10 Cyanide)						tumal tumal
Exceptions: VOA, Coliform, TOC/DOC Oil and Grease, DRO/8015		Voc	Γ	l No	[] N/A	Desitive for Besidual DV
1	Ш	Yes	L	J No	₩ N/A	
(water) and Dioxins/PFAS (*If adding preservative to a container, it must be added to						
						pH Paper Lot #
associated field and equipment blanksverify with PM first.)						Residual Chlorine 0-6 Roll 0-6 Strip 0-14 Strip
Headspace in Methyl Mercury Container?	П	Yes	Т	No	V N/A	13.
Extra labels present on soil VOA or WIDRO containers?	П	Yes	┪	No		14. See Exceptions
Headspace in VOA Vials (greater than 6mm)?	П	Yes	Г	No	☑ N/A	
3 Trip Blanks Present?	T	Yes		No	N/A	
Trip Blank Custody Seals Present?		Yes		No	☑.N/A	Pace Trip Blank Lot # (if purchased):
CLIENT NOTIFICATION/RESOLUTION						Field Data Required? Yes No
Person Contacted:					-	Date/Time:
Comments/Resolution:		,				
Project Manager Review: Yours Tichardson Date: 2-22-23						
NOTE: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e., out of hold, incorrect preservative, out of						
temp, incorrect containers).						Labeled By: Line

Pace Analytical ®

1700 Elm Street, Suite 200 Minneapolis, MN 55414 Phone: 612.607.1700 Fax: 612.607.6444 www.pacelabs.com

Reporting Flags

A =	Reporting	Limit based	on signal	to noise	(EDL)
-----	-----------	-------------	-----------	----------	-------

B = Less than 10x higher than method blank level

C = Result obtained from confirmation analysis

D = Result obtained from analysis of diluted sample

E = Exceeds calibration range

H2 = Extracted outside of holding time

I = Isotope ratio out of specification

J = Estimated value

L = Suppressive interference, analyte may be biased low

Nn = Value obtained from additional analysis

P = PCDE Interference

R = Recovery outside target range

S = Peak saturated

U = Analyte not detected

V = Result verified by confirmation analysis

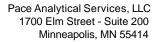
X = %D Exceeds limits

Y = Calculated using average of daily RFs

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Pace Analytical Services, LLC


1700 Elm Street, Suite 200 Minneapolis, MN 55414 Phone: 612.607.1700 Fax: 612.607.6444 www.pacelabs.com

Appendix B

Sample Analysis Summary

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Method 8290 Sample Analysis Results

Client - ESS Laboratory

Client's Sample ID 23B0634-06 Lab Sample ID 10643743001 Filename L230303A_03 Injected By SMT

<u> Pace Analytical</u>

Total Amount Extracted 10.4 g Matrix Solid % Moisture Dilution NA 26.9

Dry Weight Extracted 7.59 g Collected 02/16/2023 13:30 ICAL ID L230302 Received 02/22/2023 09:45 CCal Filename(s) L230302B 18 & L230303A 13 Extracted 02/27/2023 11:50 Method Blank ID BLANK-104255 Analyzed 03/03/2023 06:29

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	0.99 12		0.39 J 0.39	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	78 72 83
2,3,7,8-TCDD Total TCDD	5.8	0.54	0.16 J 0.16	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00	87 90 87
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	1.3 2.1 28		0.13 J 0.094 J 0.094	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	83 83 74 82
1,2,3,7,8-PeCDD Total PeCDD	4.8 16		0.21 J 0.21	1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	83 66 65
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	3.8 4.1 2.2		0.11 J 0.089 J 0.045 J	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	76 77 Y
1,2,3,7,8,9-HxCDF Total HxCDF	0.77 54		0.25 J 0.045	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	5.5 9.3 9.0 74		0.19 J 0.078 0.14 0.078	2,3,7,8-TCDD-37Cl4	0.20	60
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	25 60	1.6 	0.20 0.23 J 0.20	Total 2,3,7,8-TCDD Equivalence: 30 ng/Kg (Lower-bound - Using MADE	P Factors)	
1,2,3,4,6,7,8-HpCDD Total HpCDD	120 310		0.16 0.16			
OCDF OCDD	45 1600		0.14 0.47			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected

EMPC = Estimated Maximum Possible Concentration

NA = Not Applicable

EDL = Estimated Detection Limit

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

I = Isotope ratio out of specification

Y = Calculated using average of daily RFs

Method 8290 Sample Analysis Results

Client - ESS Laboratory

 Client's Sample ID
 23B0634-07

 Lab Sample ID
 10643743002

 Filename
 L230303A_04

 Injected By
 SMT

Total Amount Extracted 10.3 g Matrix Solid % Moisture 20.2 Dilution NA

Dry Weight Extracted Collected 02/16/2023 13:30 8.18 g ICAL ID L230302 Received 02/22/2023 09:45 CCal Filename(s) L230302B 18 & L230303A 13 Extracted 02/27/2023 11:50 Method Blank ID BLANK-104255 Analyzed 03/03/2023 07:14

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	1.9 33		0.058 0.058	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	85 79 85
2,3,7,8-TCDD Total TCDD	0.46 13		0.084 J 0.084	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	95 94 95
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	1.6 2.7 29	 	0.39 J 0.19 J 0.19	1,2,3,4,7,8-HXCDF-13C 1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	89 85 79 87
1,2,3,7,8-PeCDD Total PeCDD	2.0 16		0.072 J 0.072	1,2,3,4,7,8-HXCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	82 55 71
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	2.2 1.2 2.4		0.087 J 0.12 J 0.097 J	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	80 84 Y
1,2,3,7,8,9-HxCDF Total HxCDF	0.92 53		0.097 J 0.087	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	2.6 17 8.2 120		0.45 J 0.31 0.46 0.31	2,3,7,8-TCDD-37Cl4	0.20	68
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	39 2.8 180	 	0.18 0.29 J 0.18	Total 2,3,7,8-TCDD Equivalence: 74 ng/Kg (Lower-bound - Using MADE	P Factors)	
1,2,3,4,6,7,8-HpCDD Total HpCDD	500 940		0.59 0.59			
OCDF OCDD	83 3700		0.35 0.57			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). ND = Not Detected EMPC = Estimated Maximum Possible Concentration NA = Not Applicable

EDL = Estimated Detection Limit NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

Y = Calculated using average of daily RFs

Method 8290 Sample Analysis Results

Client - ESS Laboratory

 Client's Sample ID
 23B0634-08

 Lab Sample ID
 10643743003

 Filename
 L230303A_05

 Injected By
 SMT

Total Amount Extracted 10.6 g Matrix Solid % Moisture 23.6 Dilution NA

Dry Weight Extracted Collected 02/16/2023 13:30 8.12 g ICAL ID L230302 Received 02/22/2023 09:45 CCal Filename(s) L230302B 18 & L230303A 13 Extracted 02/27/2023 11:50 Method Blank ID BLANK-104255 Analyzed 03/03/2023 07:58

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	3.7 48		0.58 0.58	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	84 80 90
2,3,7,8-TCDD Total TCDD	0.39 14		0.19 J 0.19	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	93 96 97
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	2.1 3.2 37	 	0.76 J 0.035 J 0.035	1,2,3,4,7,8-HXCDF-13C 1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	89 85 80 87
1,2,3,7,8-PeCDD Total PeCDD	0.89 14		0.12 J 0.12	1,2,3,4,7,8-HXCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	84 67 67
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	3.2 2.7 3.1		0.10 J 0.11 J 0.14 J	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	76 75 Y
1,2,3,7,8,9-HxCDF Total HxCDF	0.92 36		0.068 J 0.068	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	1.3 2.6 1.9 27	 	0.26 J 0.30 J 0.14 J 0.14	2,3,7,8-TCDD-37Cl4	0.20	69
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	22 40	1.2 	0.62 0.55 JJ 0.55	Total 2,3,7,8-TCDD Equivalence: 16 ng/Kg (Lower-bound - Using MADE	P Factors)	
1,2,3,4,6,7,8-HpCDD Total HpCDD	41 82		0.23 0.23			
OCDF OCDD	18 270		0.44 0.40			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected NA = Not Applicable

EMPC = Estimated Maximum Possible Concentration EDL = Estimated Detection Limit

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

I = Isotope ratio out of specification

Y = Calculated using average of daily RFs

Method 8290 Sample Analysis Results

Client - ESS Laboratory

 Client's Sample ID
 23B0634-09

 Lab Sample ID
 10643743004

 Filename
 L230303A_06

 Injected By
 SMT

 Total Amount Extracted
 10.4 g

Total Amount Extracted 10.4 g Matrix Solid % Moisture 19.9 Dilution NA

Dry Weight Extracted Collected 02/16/2023 12:00 8.35 g ICAL ID L230302 Received 02/22/2023 09:45 CCal Filename(s) L230302B 18 & L230303A 13 Extracted 02/27/2023 11:50 Method Blank ID BLANK-104255 Analyzed 03/03/2023 08:43

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	0.49 7.0		0.12 J 0.12	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	88 84 97
2,3,7,8-TCDD Total TCDD	0.21 1.7		0.089 J 0.089	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	102 108 98
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	0.57 1.1 18		0.34 J 0.29 J 0.29	1,2,3,4,7,8-11XCDF-13C 1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	90 92 90 80 97
1,2,3,7,8-PeCDD Total PeCDD	0.39 3.0		0.14 J 0.14 J	1,2,3,4,7,8-11,CDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	95 77 74
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	0.81 1.2	0.67	0.080 J 0.070 IJ 0.075 J	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	84 82 Y
1,2,3,7,8,9-HxCDF Total HxCDF	0.51 16		0.038 J 0.038	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	1.1 0.80 9.3	0.50 	0.089 JJ 0.070 J 0.093 J 0.070	2,3,7,8-TCDD-37Cl4	0.20	70
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	6.7 0.48 12		0.15 0.19 J 0.15	Total 2,3,7,8-TCDD Equivalence: 5.2 ng/Kg (Lower-bound - Using MADE	EP Factors)	
1,2,3,4,6,7,8-HpCDD Total HpCDD	12 24		0.16 0.16			
OCDF OCDD	6.6 95		0.15 J 0.16			

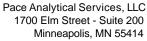
Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected

EMPC = Estimated Maximum Possible Concentration

NA = Not Applicable

EDL = Estimated Detection Limit


NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

I = Isotope ratio out of specification

Y = Calculated using average of daily RFs

Method 8290 Sample Analysis Results

Client - ESS Laboratory

Client's Sample ID 23B0634-10 Lab Sample ID 10643743005 Filename L230303A_07 Injected By SMT

<u> Pace Analytical</u>

Total Amount Extracted 10.8 g Matrix Solid % Moisture 5.7 Dilution NA

Dry Weight Extracted 10.2 g Collected 02/16/2023 12:00 ICAL ID L230302 Received 02/22/2023 09:45 CCal Filename(s) L230302B 18 & L230303A 13 Extracted 02/27/2023 11:50 Method Blank ID BLANK-104255 Analyzed 03/03/2023 09:27

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	2.8 140		0.80 0.80	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	95 79 82
2,3,7,8-TCDD Total TCDD	0.28 30		0.064 J 0.064	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	86 105 115
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	 140	47 14 	0.11 P 0.071 P 0.071	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	89 88 88 96
1,2,3,7,8-PeCDD Total PeCDD	1.5 35		0.20 J 0.20	1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00	90 75 75
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	9.3 12	9.1 	0.080 0.14 P 0.10	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	85 67 Y
1,2,3,7,8,9-HxCDF Total HxCDF	120	2.6	0.077 PJ 0.077	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	1.9 3.4 2.1 56		0.14 J 0.19 J 0.14 J 0.14	2,3,7,8-TCDD-37Cl4	0.20	67
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	120 1.7 130		0.29 0.22 J 0.22	Total 2,3,7,8-TCDD Equivalence: 62 ng/Kg (Lower-bound - Using MADE	P Factors)	
1,2,3,4,6,7,8-HpCDD Total HpCDD	22 56		0.15 0.15			
OCDF OCDD	25 160		0.31 0.13			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected NA = Not Applicable

EMPC = Estimated Maximum Possible Concentration

EDL = Estimated Detection Limit

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

P = PCDE Interference

Y = Calculated using average of daily RFs

Method 8290 Sample Analysis Results

Client - ESS Laboratory

Client's Sample ID 23B0634-11 Lab Sample ID 10643743006 Filename L230303A_08 Injected By SMT

Total Amount Extracted 12.1 g Matrix Solid % Moisture 23.6 Dilution NA

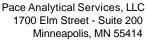
Dry Weight Extracted 9.26 g Collected 02/16/2023 12:00 ICAL ID L230302 Received 02/22/2023 09:45 CCal Filename(s) L230302B 18 & L230303A 13 Extracted 02/27/2023 11:50 Method Blank ID BLANK-104255 Analyzed 03/03/2023 10:12

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	6.3 170		0.58 0.58	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	83 79 92
2,3,7,8-TCDD Total TCDD	0.51 21		0.30 J 0.30	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	94 98 94
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	5.1 9.9 110	 	0.19 J 0.22 0.19	1,2,3,4,7,6-HXCDF-13C 1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	89 87 78 88
1,2,3,7,8-PeCDD Total PeCDD	1.3 21		0.18 J 0.18	1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	86 72 64
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	8.0 6.4 7.9		0.13 0.084 0.084	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	74 68 Y
1,2,3,7,8,9-HxCDF Total HxCDF	2.5 81		0.14 J 0.084	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	1.2 2.6 1.9 28		0.42 J 0.099 J 0.11 J 0.099	2,3,7,8-TCDD-37Cl4	0.20	69
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	26 2.8 42	 	0.21 0.30 J 0.21	Total 2,3,7,8-TCDD Equivalence: 27 ng/Kg (Lower-bound - Using MADE	P Factors)	
1,2,3,4,6,7,8-HpCDD Total HpCDD	33 59		0.15 0.15			
OCDF OCDD	14 160		0.28 0.30			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration

ND = Not Detected NA = Not Applicable


EDL = Estimated Detection Limit

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

Y = Calculated using average of daily RFs

1700 Elm Street - Suite 200 Minneapolis, MN 55414

> Tel: 612-607-1700 Fax: 612-607-6444

Method 8290 Sample Analysis Results

Client - ESS Laboratory

Client's Sample ID 23B0634-12 Lab Sample ID 10643743007 Filename L230303A_09 Injected By SMT

<u> Pace Analytical</u>

Total Amount Extracted 10.2 g Matrix Solid % Moisture Dilution NA 13.3

Dry Weight Extracted Collected 02/16/2023 14:30 8.87 g ICAL ID L230302 Received 02/22/2023 09:45 CCal Filename(s) L230302B 18 & L230303A 13 Extracted 02/27/2023 11:50 Method Blank ID BLANK-104255 Analyzed 03/03/2023 10:56

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	ND 2.8		0.29 0.29	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	84 80 100
2,3,7,8-TCDD Total TCDD	ND ND		0.069 0.069	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	99 107 95
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND 0.35 7.3	 	0.23 0.18 J 0.18	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	88 89 79 93
1,2,3,7,8-PeCDD Total PeCDD	1.0	0.19	0.12 J 0.12 J	1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	88 74 69
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	0.53 0.37	 0.49	0.070 J 0.073 J 0.067 J	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 2.00 4.00	78 74 Y
1,2,3,7,8,9-HxCDF Total HxCDF	0.29 7.4		0.053 J 0.053	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	0.39 0.66 0.52 6.7	 	0.23 J 0.090 J 0.043 J 0.043	2,3,7,8-TCDD-37Cl4	0.20	66
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	3.4 ND 6.8	 	0.074 J 0.11 0.074	Total 2,3,7,8-TCDD Equivalence: 3.4 ng/Kg (Lower-bound - Using MADE	P Factors)	
1,2,3,4,6,7,8-HpCDD Total HpCDD	16 32		0.19 0.19			
OCDF OCDD	5.0 140		0.21 J 0.18			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected EMPC = Estimated Maximum Possible Concentration NA = Not Applicable EDL = Estimated Detection Limit NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

I = Isotope ratio out of specification

Y = Calculated using average of daily RFs

Method 8290 Sample Analysis Results

Client - ESS Laboratory

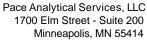
Client's Sample ID 23B0634-13 Lab Sample ID 10643743008 Filename L230303A_10 Injected By SMT **Total Amount Extracted** 10.2 g Matrix Solid % Moisture Dilution NA 20.3 Dry Weight Extracted Collected 02/16/2023 14:30 8.14 g ICAL ID L230302 Received 02/22/2023 09:45

CCal Filename(s) L230302B_18 & L230303A_13 Extracted 02/27/2023 11:50
Method Blank ID BLANK-104255 Analyzed 03/03/2023 11:41

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	34 560		0.15 0.15	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	77 76 81
2,3,7,8-TCDD Total TCDD	3.3 120		0.061 0.061	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	85 93 87
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	9.6 22 230	 	2.9 0.88 0.88	1,2,3,4,7,8-HXCDF-13C 1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	79 75 70 76
1,2,3,7,8-PeCDD Total PeCDD	3.1 51		0.28 J 0.28	1,2,3,4,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	76 76 58 56
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	6.2 5.6 8.7		0.090 0.11 J 0.11	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	64 55 Y
1,2,3,7,8,9-HxCDF Total HxCDF	1.5 110		0.13 J 0.090	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	1.4 3.3 2.6 42	 	0.13 J 0.11 J 0.11 J 0.11	2,3,7,8-TCDD-37Cl4	0.20	61
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	46 1.4 57	 	0.15 0.25 J 0.15	Total 2,3,7,8-TCDD Equivalence: 54 ng/Kg (Lower-bound - Using MADE	P Factors)	
1,2,3,4,6,7,8-HpCDD Total HpCDD	19 39		0.17 0.17			
OCDF OCDD	24 80		0.34 0.19			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected EMPC = Estimated Maximum Possible Concentration


NA = Not Applicable

EMPC = Estimated Maximum Possible Concentration NA = Not Applicable EDL = Estimated Detection Limit NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

Y = Calculated using average of daily RFs

Method 8290 Sample Analysis Results

Client - ESS Laboratory

Client's Sample ID 23B0634-14 Lab Sample ID 10643743009 Filename L230303A_11 Injected By SMT

<u> Pace Analytical</u>

Total Amount Extracted 10.6 g Matrix Solid % Moisture Dilution NA 21.6

Dry Weight Extracted Collected 02/16/2023 14:30 8.35 g ICAL ID L230302 Received 02/22/2023 09:45 CCal Filename(s) L230302B 18 & L230303A 13 Extracted 02/27/2023 11:50 Method Blank ID BLANK-104255 Analyzed 03/03/2023 12:25

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	8.5 300		0.36 0.36	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	62 59 72
2,3,7,8-TCDD Total TCDD	0.69 26		0.28 J 0.28	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	75 77 73
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	11 130	4.7 	0.33 PJ 0.17 0.17	1,2,3,4,7,6-HXCDF-13C 1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	67 68 59 68
1,2,3,7,8-PeCDD Total PeCDD	1.4 19		0.21 J 0.21	1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	67 58 52
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	5.8 5.4 7.0		0.12 J 0.14 J 0.088	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	59 58 Y
1,2,3,7,8,9-HxCDF Total HxCDF	1.0 74		0.094 J 0.088	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	1.3 11	0.80 0.53	0.18 J 0.10 J 0.085 J 0.085	2,3,7,8-TCDD-37Cl4	0.20	65
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	33 0.63 37		0.14 0.32 J 0.14	Total 2,3,7,8-TCDD Equivalence: 27 ng/Kg (Lower-bound - Using MADE	P Factors)	
1,2,3,4,6,7,8-HpCDD Total HpCDD	3.3 7.5		0.16 J 0.16			
OCDF OCDD	4.0 10		0.21 J 0.30 J			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

NA = Not Applicable

EMPC = Estimated Maximum Possible Concentration EDL = Estimated Detection Limit

NC = Not Calculated

ND = Not Detected

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

P = PCDE Interference

I = Isotope ratio out of specification

Y = Calculated using average of daily RFs

Method 8290 Blank Analysis Results

Lab Sample Name
Lab Sample ID
Filename
Total Amount Extracted

Total Amount Extracted ICAL ID

CCal Filename(s)

DFBLKVS BLANK-104255 L230301B_07 10.4 g

L230225 L230301A_17 & L230301B_17 Matrix Solid
Dilution NA

Extracted 02/27/2023 11:50 Analyzed 03/01/2023 19:06

Injected By SMT

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	ND ND		0.100 0.100	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	88 70 98
2,3,7,8-TCDD Total TCDD	ND ND		0.12 0.12	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	92 90 100
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND ND ND		0.069 0.069 0.069	1,2,3,4,7,8-HXCDF-13C 1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	93 91 88 82
1,2,3,7,8-PeCDD Total PeCDD	ND ND		0.10 0.10	1,2,3,4,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	83 61 58
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF Total HxCDF	ND ND ND ND ND	 	0.075 0.050 0.066 0.11 0.050	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C 1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 4.00 2.00 2.00 2.00	80 Y 63 Y NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	ND ND ND ND	0.20 	0.084 JJ 0.099 0.10 0.084	2,3,7,8-TCDD-37Cl4	0.20	73
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	ND ND ND		0.12 0.19 0.12	Total 2,3,7,8-TCDD Equivalence: 0.043 ng/Kg (Lower-bound - Using MADE	P Factors)	
1,2,3,4,6,7,8-HpCDD Total HpCDD	0.21	0.21	0.18 J 0.18 J			
OCDF OCDD	ND ND		0.33 0.65			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration

EDL = Estimated Detection Limit

Results reported on a total weight basis and are valid to no more than 2 significant figures.

J = Estimated value

I = Isotope ratio out of specification

Y = Calculated using average of daily RFs

Method 8290 Laboratory Control Spike Results

Lab Sample ID Filename Total Amount Extracted

Total Amount Extracted ICAL ID

CCal Filename(s) Method Blank ID LCS-104256 L230301B_01 10.2 g

L230225 L230301A_17 & L230301B_17 BLANK-104255 Matrix Dilution Extracted Solid NA

Extracted 02/27/2023 11:50 Analyzed 03/01/2023 14:39

Injected By SMT

Native Isomers	Qs (ng)	Qm (ng)	% Rec.	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	0.20	0.21	104	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.0 2.0 2.0	86 68 93
2,3,7,8-TCDD Total TCDD	0.20	0.22	111	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.0 2.0 2.0	90 85 100
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	1.0 1.0	1.0 1.0	101 101	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.0 2.0 2.0 2.0 2.0	95 93 81 86
1,2,3,7,8-PeCDD Total PeCDD	1.0	0.99	99	1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.0 2.0 2.0 2.0	88 65 61
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF	1.0 1.0 1.0 1.0	1.0 1.0 1.0 1.0	103 105 103 101	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C 1,2,3,4-TCDD-13C	2.0 4.0 2.0	84 Y 67 Y NA
Total HxCDF	1.0	1.0	101	1,2,3,7,8,9-HxCDD-13C	2.0	NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	1.0 1.0 1.0	1.1 0.99 0.95	111 99 95	2,3,7,8-TCDD-37Cl4	0.20	74
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	1.0 1.0	1.1 1.0	107 104			
1,2,3,4,6,7,8-HpCDD Total HpCDD	1.0	0.98	98			
OCDF OCDD	2.0 2.0	2.5 2.3	125 113			

Qs = Quantity Spiked Qm = Quantity Measured

Rec. = Recovery (Expressed as Percent) R = Recovery outside of target range Y = RF averaging used in calculations Nn = Value obtained from additional analysis

NA = Not Applicable * = See Discussion

ESS Laboratory Sample and Cooler Receipt Checklist

Client	Weston	and Samps	on Engineers,	Inc - TB	ESS	Project ID:	23B0634	
01:			FOO Comica			Received:	2/17/2023 2/27/2023	
Snipped/L	elivered via:		ESS Courier			Due Date: for Project:	5 Day	
1 Air hill m	nanifest prese	ent?	Г	No	6 Does COC	match bottles?		Yes
	:			,,,,				
0 111		10	Г	No. 1	7. Is COC co	mplete and correct?		Yes
2. Were cu	ustody seals p	oresent?	L	No	8. Were sam	ples received intact?		Yes
3. Is radiat	ion count <10	00 CPM?	[Yes	34(1,13032333)(1			1000 (00000 (00000)
	I D10		г	V 1	9. Were labs	informed about short	holds & rushes?	Yes / No / NA
	oler Present? : -0.4		Ice	Yes	10. Were any	analyses received outs	side of hold time?	Yes / No
			-	Yes				-/-
5. Was CC	OC signed an	d dated by c	lient? [res	-			
11 Any Su	bcontracting	needed2	Yes	/ No	12 Were VO	As received?		Yes / No
	Sample IDs:		163	110		es in aqueous VOAs?		Yes / No
200	Analysis:			1		hanol cover soil complet	ely?	Yes / No / NA
13. Are the	e samples pro	perly preser	rved?	Yes / No				
	s preserved u			Date:	Time:	By/Acid	Lot#:	
b. Low Lev	vel VOA vials	frozen:		Date:	Time: _		By:	
Sample De	ceiving Note							
Sample Ive	cerving rvote.	3.						
samples sp	olit for sub an	alysis						
	ere a need to		oject Manage client?	r? Date:	Yes / No Yes / No Time:		Ву:	
Resolution:								
Sample Number	Container ID	Proper Container	Air Bubbles Present	Sufficient Volume	Container Type	Preservative		(Cyanide and 608 sticides)
1	401152	Yes	N/A	Yes	8 oz jar	NP		
1	401153	Yes	N/A	Yes	8 oz jar	NP		
2	401154	Yes	N/A	Yes	8 oz jar	NP		
2	401155	Yes	N/A	Yes	8 oz jar	NP		
2	401191	Yes	N/A	Yes	2 oz. Jar	NP		
3	401156	Yes	N/A	Yes	8 oz jar	NP		
3	401270	Yes	N/A	Yes	4 oz. Jar	NP		
4	401158	Yes	N/A	Yes	8 oz jar	NP		
4	401159	Yes	N/A	Yes	8 oz jar	NP		
4	401164	Yes	N/A	Yes	8 oz jar	NP		
5	401160	Yes	N/A	Yes	8 oz jar	NP		
5	401161	Yes	N/A	Yes	8 oz jar	NP		
5	401165	Yes	N/A	Yes	8 oz jar	NP		
6	401162	Yes	N/A	Yes	8 oz jar	NP		
6	401163	Ves	N/A	Yes	8 oz jar	NP		

Yes

Yes

401166

401168

Yes

Yes

N/A

N/A

8 oz jar

2 oz. Jar

NP

ESS Laboratory Sample and Cooler Receipt Checklist

Client: _	Weston a	nd Sampso	n Engineers	, Inc - TB	ESS Proje		23B0634 2/17/2023
7	401274	Ves	NIA	Vac	4 oz. Jar	NP	LITILULU
7	401271	Yes	N/A	Yes		NP	
8	401167	Yes	N/A	Yes	8 oz jar	NP	
8	401169	Yes	N/A	Yes	2 oz. Jar	NP	
8	401272	Yes	N/A	Yes	4 oz. Jar		
9	401170	Yes	N/A	Yes	8 oz jar	NP	
9	401202	Yes	N/A	Yes	8 oz jar	NP	
10	401171	Yes	N/A	Yes	8 oz jar	NP	
10	401181	Yes	N/A	Yes	2 oz. Jar	NP	
10	401273	Yes	N/A	Yes	4 oz. Jar	NP	
11	401172	Yes	N/A	Yes	8 oz jar	NP	
11	401182	Yes	N/A	Yes	2 oz. Jar	NP	
11	401274	Yes	N/A	Yes	4 oz. Jar	NP	
12	401173	Yes	N/A	Yes	8 oz jar	NP	
12	401183	Yes	N/A	Yes	8 oz jar	NP	
13	401174	Yes	N/A	Yes	8 oz jar	NP	
13	401184	Yes	N/A	Yes	8 oz jar	NP	
13	401275	Yes	N/A	Yes	4 oz. Jar	NP	
14	401175	Yes	N/A	Yes	8 oz jar	NP	
14	401185	Yes	N/A	Yes	8 oz jar	NP	
15	401176	Yes	N/A	Yes	8 oz jar	NP	
15	401203	Yes	N/A	Yes	8 oz jar	NP	
16	401177	Yes	N/A	Yes	8 oz jar	NP	
16	401186	Yes	N/A	Yes	8 oz jar	NP	
17	401178	Yes	N/A	Yes	8 oz jar	NP	
17	401187	Yes	N/A	Yes	8 oz jar	NP	
18	401179	Yes	N/A	Yes	8 oz jar	NP	
18	401190	Yes	N/A	Yes	2 oz. Jar	NP	
18	401276	Yes	N/A	Yes	4 oz. Jar	NP	
19	401188	Yes	N/A	Yes	8 oz jar	NP	
19	401189	Yes	N/A	Yes	8 oz jar	NP	
d Review							
			storage/lab?	?	Initials Yesy No		
	labels on co		ners? container ID	# circled?	Yes / No / NA		
	Chrome stick			on older	Yes / No / NA		
all QC s	tickers attach	ned? /			Yes / No / NA		
	ckers attache		s noted?		Yes / No / NA		
ompleted By:	H				Date & Time:	11:46	2/21/23
PSVC	111 "				MAIN OF LITTLE	117	212128.

							220	77.76	C	66	6-
	185 Frances A Cranston, RI Phone: 401-461 www.esslaborat	02910 Turn 01-7181 Regu -4486	n Time (Days) lulatory State:	CHAIN OF CUS		A Limit C	ctronic heeker ke Package	State Form State Uple Other (Sp	ecify) →	IS	7
Client: W Address: 55 BRZ Phone: 9: Email tribution KC List: BH	ESTON + S WALKEZS OK DRIVE R TO BIS 9212 OSKALOW HONIAPOW ection Collection	EADING PRISEINC CON	Project Name: roject Locution: roject Number: roject Manager: Bill to: PO#: Quote#:	PROJECT INFORM CLAYTON CO INCEDIMAN IN L. KOSKA L. KOSKA SEE T. BYRNX	Clien acknowle that samp is compl with all E State regulate	dges William WOLL	DIOXINS SUNSTINE	10 m	NALYSES		Total Number of Bottles
THE RESERVE	6 Z3 1045	\$ 6	Soil	B-201 (0-1)	Imple ID	XXX	- 9	1111			2
2	T 1045	7	T	B-ZO1 (Z-4)		XXX					3 (
3	1045			B-201 (4-6)	111					
ч	1015			B-202 (0-1)		7 7 7					3
5	1015			B-202 (2-4		XXX					3
6	1330			3-203 (0-1	1	77	X				2
7 7	1330			B-203 (2-	4)	7.1	K				Z
8	1330			3-203 (4-	6	7 27	N N				Z
a I	1700			3-704 10-	1)	XX	X				12
10	1200	1	1	R-204 (Z-	4)	NX S	14				12
Container		sette AG-Amber Glas	ss B-BOD Bott	le C-Cubitainer J-Jar O-O	ther P-Poly S-Sterile V-Vial						
Container Vo					z 9-4 oz 10-8 oz 11-Other*						
Preservation	2.1		NO3 5-NaOH 6-	Methanol 7-Na2S2O3 8-ZnAce, N	QH 9-NH4CI 10-DI H2O 11-Oct						
Sample			76 110		Chain needs to	1 TANKS (17)	GOVERNMENT OF THE PARTY OF THE		00000	ime deliv	ery.
Laboratory or Temperature		omments: Fiea	ise specify Of	her" preservative and cont			aboratory's	nitted are sub payment ter ditions.		Dissolved l'	iltration ab Filter
elinquished b	y (Signature)	Date 10/23 110	Time 172D	Received by (Signature)	Relinquished by (Sig	naturej	Date	TI	me R	eccived by ((Signature
elinquished by		1000		20 10.77					And the state of t		

										2	38c	63	34		
	4 0		CHAIN OF CUSTODY						ab#	102	034			2 0	Z
HUE	185 Frances Avenue Cranston, RI 02910		Turn Time (Days) ->5 725 -4 -3 -2 -1 - Same Day							DICUIS	LIVERA	BLESO	inal Repr	orts are Pl	106.0
(3-6)		: 401-461-7181	Regulatory Stat		Criteria:	DCS -		THE PERSON NAMED IN	it Checker	-	State Fo		☐ EQui	S	
TABLE	CM 10-7	401-461-4486			ect for any of the fo	4 141		THE EXC	cl		State U		The Envi	Deta	
LABORA	Mun es	slaboratory.com	□ CT RCP	DE MA MCP	RGP	Permit	□ 401 WQ	O.CLE	-Like Pac		Other (S				
THE REAL PROPERTY.	CLIENT INFORMA	ATION		PROJE	CT INFORMA	TION		314		REQU	ESTED	ANAL	YSES		
Client:	WESTON +	SAMPSON	Project Nan	e: CLAX	JOH FIE	LU	Client	77	9	LYJ	1. LX	+			7.
	S5 WALKET		Project Location	IN NEEDI	HAM. 1	MA	acknowledges			1 9	19				Total Number of Bottles
DRIL	IE READIN	6 MA	Project Numb				that sampling is compliant	126	100	Shide	1100			11	l g
Phone:	978 218	9212	Project Manug	er: L. KC	SKA		with all EPA /	20	2	§					1 2
Email	KOSKAL@	WSEINC. CO	Bill	to: 1°	11		State	5 5	00 =	19	B			11	2
Distribution	2113	A >5 C 127	TOM PO)#:			regulatory	03	土谷	1 1					1 6
List:	BHUNIAP	10 WSE IN	Quot	" See T	- BYRNY	E QUOTE	regulatory	UN	世出	0	17				2
ESS Lab ID	Collection Collection	Sample Type	Sample Matrix		Sam	ple ID		20	4	19	甲				
- 11	7/16/23 1700	6	3	B-ZOL	1(4-6)			XX	XX						Z
1.7	1430		1	B-255	(0-1)			XX	XX						2
13	1430			B-205				XX	44						7
	1430			B-205	1			YY	24						2
14			1	B-206	7			v2						11	2
15	1515)	-	B -70	1			00	24	+++				-	1
lie	1515			1	10			00	3	++	++-			++	Z
i7	1515			15-100	1111	1		XX	X	++	-	-	+++	+	
+ 18	1530			B - 20=	-			XX	X	+	-	-			Z
19	1400		1	CF - S	STOCKPIL	E		XX	X		1				Z
			TOZIT	123											
Cont	tuiner Type: AC	-Air Cassette AG-Am	ber Glass B-BOD B		J-Jar O-Other	P-Poly S-Ste	rile V-Vial								
Contair		00 mL 2-2.5 gal 3-2			17 5 1 - 18 17 - 18 17 17 17 18 18 18 18 18 18 18 18 18 18 18 18 18	9-4 oz 10-8 oz	AND AND ADDRESS OF THE PARTY OF								
Preserv		Preserved 2-HCI 3-H2SC	04 4-HN03 5-NaOH	6-Methanol 7-Na2S	203 8-ZnAce, NaOH										
S	ampled by:	COUTRE				Chain	needs to be fi	illed ou	t neatl	y and o	comple	tely fo	or on ti	me deli	very.
Labo	ratory Use Only	Comments:	* Please specify "	Other" preservat	tive and containe	ers types in thi	s space	Alls	amples	submitte	d are sul	hiect to			
	1000	-									ment ter			is intention	iltration
Cooler Temper	rature (°C):	-						1		conditio			2000	THE PARTY	
				David day	(Nimolaum)	Dellandel	41		I III SP MISS	or the second			-	DE BOURSE DE	ab Fiker
Relinquis	shed by (Signature)	Date	· Time	Received by	(Signature)	Reinquisi	ed by (Signature	N. S.	Date	4		me	Rec	cived by	(Signature)
11/10/49	14/11/6	2/16/23	1730	1204	2:00										
Pulleonte	hed by (Signature)	D	OF THE SHAPE OF THE SHAPE OF	Received by	(Signature)	Patronto	ed by (Signature								
Kennyaki	ned by (signature)	Date	Time	Received by	(cagaatare)	weamquisi	ica by (signature	MACE	Date			ime	Rr	ceived by	(Signature